=====Boolean modules over a relation algebra===== Abbreviation: **BRMod** ====Definition==== A \emph{Boolean module over a [[relation algebra]]} $\mathbf{R}$ is a structure $\mathbf{A}=\langle A,\vee,0, \wedge,1,\neg,f_r\ (r\in R)\rangle$ such that $\langle A,\vee,0,\wedge,1,\neg\rangle$ is a [[Boolean algebra]] $f_r$ is \emph{join-preserving}: $f_r(x\vee y)=f_r(x)\vee f_r(y)$ $f_{r\vee s}(x)=f_r(x)\vee f_s(x)$ $f_r(f_s(x))=f_{r\circ s}(x)$ $f_{1'}$ is the identity map: $f_{1'}(x)=x$ $f_0(x)=0$ $f_{r^\smile}(\neg (f_r(x)))\le \neg x$ Remark: Assuming that $f_r$ is order-preserving, the last identity is equivalent to the condition that $f_{r^\smile}$ and $f_r$ are conjugate operators. It follows that $f_r$ is \emph{normal}: $f_r(0)=0$. ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Boolean modules over a realtion algebra. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a Boolean homomorphism and preserves all $f_r$: $h(f_r(x))=f_r(h(x))$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ \end{array}$ ====Subclasses==== [[One-element algebras]] ====Superclasses==== [[Boolean algebras with operators]] ====References==== [(Ln19xx> )]