=====Bounded distributive lattices===== Abbreviation: **BDLat** ====Definition==== A \emph{bounded distributive lattice} is a structure $\mathbf{L}=\langle L,\vee ,0,\wedge ,1\rangle $ such that $\langle L,\vee ,\wedge \rangle $ is a [[distributive lattice]] $0$ is the least element: $0\leq x$ $1$ is the greatest element: $x\leq 1$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be bounded distributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\to M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0$, $h(1)=1$ ====Examples==== Example 1: $\langle \mathcal P(S), \cup, \emptyset, \cap, S\rangle$, the collection of subsets of a set $S$, with union, empty set, intersection, and the whole set $S$. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] |undecidable | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] |no | ^[[Locally finite]] |yes | ^[[Residual size]] |2 | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &3\\ \end{array}$ $\begin{array}{lr} f(6)= &5\\ f(7)= &8\\ f(8)= &15\\ f(9)= &26\\ f(10)= &47\\ \end{array}$ $\begin{array}{lr} f(11)= &82\\ f(12)= &151\\ f(13)= &269\\ f(14)= &494\\ f(15)= &891\\ \end{array}$ $\begin{array}{lr} f(16)= &1639\\ f(17)= &2978\\ f(18)= &5483\\ f(19)= &10006\\ f(20)= &18428\\ \end{array}$ Values known up to size 49 [(EHR2002)]. ====Subclasses==== [[Boolean algebras]] [[Complete distributive lattices]] ====Superclasses==== [[Distributive lattices]] [[Bounded modular lattices]] ====References==== [(EHR2002> Marcel Erne, Jobst Heitzig and J\"urgen Reinhold, \emph{On the number of distributive lattices}, Electron. J. Combin., \textbf{9}, 2002, Research Paper 24, 23 pp. (electronic) )]