=====Brouwerian semilattices===== Abbreviation: **BrSlat** ====Definition==== A \emph{Brouwerian semilattice} is a structure $\mathbf{A}=\langle A, \wedge, 1, \rightarrow\rangle$ such that $\langle A, \wedge, 1\rangle$ is a [[semilattice with identity]] $\rightarrow$ gives the residual of $\wedge$: $x\wedge y\leq z\Longleftrightarrow y\leq x\rightarrow z$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Brouwerian semilattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\wedge y)=h(x)\wedge h(y)$, $h(1)=1$, $h(x\rightarrow y)=h(x)\rightarrow h(y)$ ====Definition==== A \emph{Brouwerian semilattice} is a [[hoop]] $\mathbf{A}=\langle A, \cdot, 1, \rightarrow\rangle$ such that $\cdot$ is idempotent: $x\cdot x=x$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |yes | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence e-regular]] |yes, $e=1$ | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &3\\ f(6)= &5\\ f(7)= &8\\ f(8)= &15\\ f(9)= &26\\ f(10)= &47\\ f(11)= &82\\ f(12)= &151\\ f(13)= &269\\ f(14)= &494\\ f(15)= &891\\ f(16)= &1639\\ f(17)= &2978\\ f(18)= &5483\\ f(19)= &10006\\ f(20)= &18428\\ \end{array}$ Values known up to size 49 [(ErneHeitzigReinhold2002)] ====Subclasses==== [[Brouwerian algebras]] ====Superclasses==== [[Semilattices with identity]] [[Hoops]] ====References==== [(ErneHeitzigReinhold2002> M. Ern\'e, J. Heitzig, J. Reinhold, \emph{On the number of distributive lattices}, Electronic J. Combinatorics 9 (2002), no. 1, Research Paper 24, 23 pp. )]