=====Commutative inverse semigroups===== Abbreviation: **CInvSgrp** ====Definition==== A \emph{commutative inverse semigroup} is an [[inverse semigroups]] $\mathbf{S}=\langle S,\cdot,^{-1}\rangle $ such that $\cdot$ is commutative: $xy=yx$ ====Definition==== A \emph{commutative inverse semigroup} is a structure $\mathbf{S}=\langle S,\cdot,^{-1}\rangle $ such that $\cdot$ is associative: $(xy)z=x(yz)$ $\cdot$ is commutative: $xy=yx$ $^{-1}$ is an inverse: $xx^{-1}x=x$, $(x^{-1})^{-1}=x$ ==Morphisms== Let $\mathbf{S}$ and $\mathbf{T}$ be commutative inverse semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a homomorphism: $h(xy)=h(x)h(y)$, $h(x^{-1})=h(x)^{-1}$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |Variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |No | ^[[Residual size]] | | ^[[Congruence distributive]] |No | ^[[Congruence modular]] |No | ^[[Congruence n-permutable]] |No | ^[[Congruence regular]] |No | ^[[Congruence uniform]] |No | ^[[Congruence extension property]] |Yes | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] |No | ^[[Amalgamation property]] |Yes | ^[[Strong amalgamation property]] |Yes | ^[[Epimorphisms are surjective]] |Yes | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$ ====Subclasses==== [[Abelian groups]] [[Semilattices]] ====Superclasses==== [[Inverse semigroups]] ====References==== [(Ln19xx> )]