=====Complemented modular lattices===== Abbreviation: **CdMLat** ====Definition==== A \emph{complemented modular lattice} is a [[complemented lattices]] $\mathbf{L}=\langle L,\vee ,0,\wedge ,1\rangle $ that is [[modular lattices]]: $(( x\wedge z) \vee y) \wedge z=( x\wedge z) \vee ( y\wedge z) $ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be complemented modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\to M$ that is a bounded lattice homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0 $, $h(1)=1$ ====Examples==== Example 1: ====Basic results==== This class generates the same variety as the class of its finite members plus the non-desargean planes. ====Properties==== ^[[Classtype]] |first-order | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] |undecidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &0\\ f(4)= &1\\ f(5)= &1\\ f(6)= &\\ f(7)= &\\ f(8)= &\\ \end{array}$ ====Subclasses==== [[Boolean lattices]] ====Superclasses==== [[Bounded lattices]] [[Modular lattices]] ====References==== [(Ln19xx> )]