=====Groups===== Abbreviation: **Grp** ====Definition==== A \emph{group} is a structure $\mathbf{G}=\langle G,\cdot ,^{-1},e\rangle $, where $\cdot $ is an infix binary operation, called the \emph{group product}, $^{-1}$ is a postfix unary operation, called the \emph{group inverse} and $e$ is a constant (nullary operation), called the \emph{identity element}, such that $\cdot $ is associative: $(xy)z=x(yz)$ $e$ is a left-identity for $\cdot$: $ex=x$ $^{-1}$ gives a left-inverse: $x^{-1}x=e$. Remark: It follows that $e$ is a right-identity and that $^{-1}$gives a right inverse: $xe=x$, $xx^{-1}=e$. ==Morphisms== Let $\mathbf{G}$ and $\mathbf{H}$ be groups. A morphism from $\mathbf{G}$ to $\mathbf{H}$ is a function $h:Garrow H$ that is a homomorphism: $h(xy)=h(x)h(y)$, $h(x^{-1})=h(x)^{-1}$, $h(e)=e$ ====Examples==== Example 1: $\langle S_{X},\circ ,^{-1},id_{X}\rangle $, the collection of permutations of a sets $X$, with composition, inverse, and identity map. Example 2: The general linear group $\langle GL_{n}(V),\cdot ,^{-1},I_{n}\rangle $, the collection of invertible $n\times n$ matrices over a vector space $V$, with matrix multiplication, inverse, and identity matrix. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable in polynomial time | ^[[Quasiequational theory]] |undecidable | ^[[First-order theory]] |undecidable | ^[[Congruence distributive]] |no ($\mathbb{Z}_{2}\times \mathbb{Z}_{2}$) | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, n=2, $p(x,y,z)=xy^{-1}z$ is a Mal'cev term | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence types]] |1=permutational | ^[[Congruence extension property]] |no, consider a non-simple subgroup of a simple group | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes | ^[[Epimorphisms are surjective]] |yes | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &1\\ f(6)= &2\\ f(7)= &1\\ f(8)= &5\\ f(9)= &2\\ f(10)= &2\\ f(11)= &1\\ f(12)= &5\\ f(13)= &1\\ f(14)= &2\\ f(15)= &1\\ f(16)= &14\\ f(17)= &1\\ f(18)= &5\\ \end{array}$ Information about small groups up to size 2000: http://www.tu-bs.de/~hubesche/small.html ====Subclasses==== [[p-groups]] [[nilpotent groups]] [[solvable groups]] ====Superclasses==== [[Monoids]] [[Inverse semigroups]] ====References==== [(Ln19xx> )]