=====Heyting algebras===== Abbreviation: **HA** ====Definition==== A \emph{Heyting algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,\to \rangle $ such that $\langle A,\vee ,0,\wedge ,1\rangle $ is a bounded distributive lattice $\to$ gives the residual of $\wedge$: $x\wedge y\leq z\Longleftrightarrow y\leq x\to z$ ====Definition==== A \emph{Heyting algebra} is a FLew-algebra $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,\cdot ,\to \rangle $ such that $x\wedge y=x\cdot y$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Heyting algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(0)=0$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(1)=1$, $h(x\to y)=h(x)\to h(y)$ ====Examples==== Example 1: The open sets of any [[topological space]] $\mathbf X$ form a Heyting algebra under the operations of union $\cup$, empty set $\emptyset$, intersection $\cap$, whole space $X$, and the operation $U\to V=$ interior of $(X - U)\cup V$. Example 2: Any [[frame]] can be expanded to a unique Heyting algebra by defining $x\to y = \bigvee\{z:x\wedge z\le y\}$. ====Basic results==== Any finite distributive lattice is the reduct of a unique Heyting algebra. More generally the same result holds for any complete and completely distributive lattice. A Heyting algebra is subdirectly irreducible if and only if it has a unique coatom. ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence e-regular]] |yes, $e=1$ | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |yes | ^[[Equationally def. pr. cong.]] |yes | ^[[Amalgamation property]] |yes | ^[[Strong amalgamation property]] |yes | ^[[Epimorphisms are surjective]] |yes | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &3\\ f(6)= &5\\ f(7)= &8\\ f(8)= &15\\ f(9)= &26\\ f(10)= &47\\ f(11)= &82\\ f(12)= &151\\ f(13)= &269\\ f(14)= &494\\ f(15)= &891\\ f(16)= &1639\\ f(17)= &2978\\ f(18)= &5483\\ f(19)= &10006\\ f(20)= &18428\\ \end{array}$ Values known up to size 49 [(EHR2002> Marcel Ern\'e;, Jobst Heitzig and J\"urgen Reinhold,\emph{On the number of distributive lattices}, Electron. J. Combin., \textbf{9}2002,Research Paper 24, 23 pp. (electronic)[[MRreview]])] ====Subclasses==== [[Goedel algebras]] ====Superclasses==== [[Bounded distributive lattices]] ====References==== [(Ln19xx> )]