=====Integral Domain===== Abbreviation: **IntDom** ====Definition==== An \emph{integral domain} is a [[commutative rings with identity]] $\mathbf{R}=\langle R,+,-,0,\cdot,1\rangle$ that has no zero divisors: $\forall x,y\ (x\cdot y=0\Longrightarrow x=0\ \mbox{or}\ y=0)$ ==Morphisms== Let $\mathbf{R}$ and $\mathbf{S}$ be integral domains. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\rightarrow S$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$ Remark: It follows that $h(0)=0$ and $h(-x)=-h(x)$. ====Examples==== Example 1: $\langle\mathbb{Z},+,-,0,\cdot,1\rangle$, the ring of integers with addition, subtraction, zero, and multiplication is an integral domain. ====Basic results==== Every finite integral domain is a [[fields]]. ====Properties==== ^[[Classtype]] |Universal class | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] | | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |yes, $n=2$ | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &1\\ f(5)= &1\\ f(6)= &0\\ \end{array}$ ====Subclasses==== [[Unique factorization domains]] ====Superclasses==== [[Commutative rings with identity]] ====References==== [(Ln19xx> )]