=====Integral relation algebras===== Abbreviation: **IRA** (this may also abbreviate the variety generated by all integral relation algebras) ====Definition==== An \emph{integral relation algebra} is a [[relation algebra]] $\mathbf{A}=\langle A,\vee,0, \wedge, 1, ', \circ, ^{\smile}, e\rangle$ that is \emph{integral}: $x\circ y=0\Longrightarrow x=0\mbox{ or }y=0$ ====Definition==== An \emph{integral relation algebra} is a [[relation algebra]] $\mathbf{A}=\langle A,\vee,0, \wedge,1,',\circ,^{\smile},e\rangle$ in which \emph{the identity element $e$ is $0$ or an atom}: $e=x\vee y\Longrightarrow x=0\mbox{ or }y=0$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be integral relation algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\circ y)=h(x)\circ h(y)$, $h(x\vee y)=h(x)\vee h(y)$, $h(x')=h(x)'$, $h(x^\smile)=h(x)^\smile$ and $h(e)=e$. ====Examples==== For any [[group]] $\mathbf G=\langle G,*,^{-1},e\rangle$, construct the integral relation algebra $\mathcal R(G)=\langle\mathcal P(G),\cup,\emptyset,\cap,G,',\circ,^\smile,\{e\}\rangle$, where $X\circ Y=\{x*y:x\in X,y\in Y\}$ and $X^\smile=\{x^{-1}:x\in X\}$ for $X,Y\subseteq G$. ====Basic results==== Every nontrivial integral relation algebra is simple. Every simple [[commutative relation algebra]] is integral. Every [[group relation algebra]] is integral. ====Properties==== ^[[Classtype]] |universal | ^[[Equational theory]] |undecidable | ^[[Quasiequational theory]] |undecidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |no | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence $n$-permutable]] |yes | ^[[Congruence regular]] |yes | ^[[Congruence uniform]] |yes | ^[[Congruence extension property]] |yes | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== ^$n$ | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | ^# of algs | 1 | 1 | 2 | 10 | 102 | 4412 | 4886349 | 344809166311 | | For $n\ne 2^k$, the # of algebras is 0. See http://www1.chapman.edu/~jipsen/gap/ramaddux.html for more information. ====Subclasses==== [[Simple commutative relation algebras]] [[Group relation algebras]] ====Superclasses==== [[Relation algebras]] ====References==== [(Ln19xx> F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 [[MRreview]] )]