=====Integral residuated lattices===== Abbreviation: **IRL** ====Definition==== An \emph{integral residuated lattice} is a [[residuated lattice]] $\mathbf{L}=\langle L, \vee, \wedge, \cdot, 1, \backslash, /\rangle$ that is \emph{integral}: $x\le 1$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be integal residuated lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x\backslash y)=h(x)\backslash h(y)$, $h(x/y)=h(x)/h(y)$, $h(1)=1$ ====Examples==== Example 1: The negative cone of any l-group, e.g., $\mathbb Z^-$ ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] |decidable | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence $n$-permutable]] |yes | ^[[Congruence regular]] |no | ^[[Congruence $e$-regular]] |yes | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &2\\ f(4)= &9\\ f(5)= &49\\ \end{array}$ $\begin{array}{lr} f(6)= &364\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$ ====Subclasses==== [[commutative integral residuated lattices]] [[bounded integral residuated lattices]] ====Superclasses==== [[residuated lattices]] [[integral lattice-ordered monoids]] ====References==== [(Ln19xx> F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 [[MRreview]] )]