=====Meet-semidistributive lattices===== Abbreviation: **MsdLat** ====Definition==== A \emph{meet-semidistributive lattice} is a lattice $\mathbf{L}=\langle L,\vee ,\wedge \rangle$ that satisfies the meet-semidistributive law SD$_{\wedge}$: $x\wedge y=x\wedge z\Longrightarrow x\wedge y=x\wedge(y\vee z)$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be meet-semidistributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$ ====Examples==== Example 1: $D[d]=\langle D\cup\{d'\},\vee ,\wedge\rangle$, where $D$ is any distributive lattice and $d$ is an element in it that is split into two elements $d,d'$ using Alan Day's doubling construction. ====Basic results==== ====Properties==== ^[[Classtype]] |quasivariety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] |no | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &2\\ f(5)= &4\\ f(6)= &9\\ f(7)= &23\\ f(8)= &65\\ f(9)= &197\\ f(10)= &636\\ f(11)= &2171\\ f(12)= &7756\\ f(13)= &28822\\ f(14)= &110805\\ \end{array}$ ====Subclasses==== [[Semidistributive lattices]] ====Superclasses==== [[Lattices]] ====References==== [(Ln19xx> )]