=====Neardistributive lattices===== Abbreviation: **NdLat** ====Definition==== A \emph{neardistributive lattice} is a [[Lattices]] $\mathbf{L}=\langle L,\vee ,\wedge \rangle $ such that SD$_{\wedge}^2$: $x\wedge(y\vee z)=x\wedge[y\vee (x\wedge [z\vee(x\wedge y)])]$ SD$_{\vee}^2$: $x\vee(y\wedge z)=x\vee[y\wedge (x\vee [z\wedge(x\vee y)])]$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be neardistributive lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$ ====Examples==== Example 1: $D[d]=\langle D\cup\{d'\},\vee ,\wedge\rangle$, where $D$ is any distributive lattice and $d$ is an element in it that is split into two elements $d,d'$ using Alan Day's doubling construction. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] |no | ^[[Congruence regular]] |no | ^[[Congruence uniform]] |no | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] |no | ^[[Strong amalgamation property]] |no | ^[[Epimorphisms are surjective]] | | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &\\ f(5)= &\\ f(6)= &\\ f(7)= &\\ \end{array}$ ====Subclasses==== [[Almost distributive lattices]] ====Superclasses==== [[Semidistributive lattices]] ====References==== [(Ln19xx> )]