=====Ortholattices===== Abbreviation: **OLat** ====Definition==== An \emph{ortholattice} is a structure $\mathbf{L}=\langle L,\vee,0,\wedge,1,'\rangle$ such that $\langle L,\vee,0,\wedge,1\rangle$ is a bounded lattice $'$ is complementation: $x\vee x'=1$, $x\wedge x'=0$, $x''=x$ $'$ satisfies De Morgan's laws: $(x\vee y)'=x'\wedge y'$, $(x\wedge y)'=x'\vee y'$ ==Morphisms== Let $\mathbf{L}$ and $\mathbf{M}$ be ortholattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\to M$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x')=h(x)'$ ====Examples==== Example 1: $\langle P(S),\cup ,\emptyset ,\cap ,S\rangle $, the collection of subsets of a set $S$, with union, empty set, intersection, and the whole set $S$. ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |yes | ^[[Congruence modular]] |yes | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] |no | ^[[Definable principal congruences]] |no | ^[[Equationally def. pr. cong.]] |no | ^[[Amalgamation property]] | Yes | ^[[Strong amalgamation property]] | Yes [(BrunsHarding1997)] | ^[[Epimorphisms are surjective]] | | ====Finite members==== ^$n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | ^# of algs | 1 | 1 | 0 | 1 | 0 | 2 | 0 | 5 | 0 | 15 | 0 | 60 | 0 | 311 | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | ^# of si's | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 11 | 0 | 45 | 0 | 240 | 0 | | 0 | | 0 | | 0 | | 0 | | 0 | ====Subclasses==== [[Orthomodular lattices]] ====Superclasses==== [[Complemented lattices]] ====References==== [(BrunsHarding1997> G. Bruns and J. Harding, \emph{Amalgamation of ortholattices}, Order 14 (1997/98), no. 3, 193–209 [[http://www.ams.org/mathscinet-getitem?mr=99f:06014|MRreview]])]