=====Partial groupoids===== Abbreviation: **Pargoid** ====Definition==== A \emph{partial groupoid} is a structure $\mathbf{A}=\langle A,\cdot\rangle$, where $\cdot$ is a \emph{partial binary operation}, i.e., $\cdot: A\times A\to A+\{*\}$. Remark: The domain of definition of $\cdot$ is Dom$(\cdot)=\{\langle x,y\rangle\in A^2 \mid x\cdot y\ne *\}$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be partial groupoids. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: if $x\cdot y\ne *$ then $h(x \cdot y)=h(x) \cdot h(y)$ ====Examples==== Example 1: The empty partial binary operation on any set $A$ gives a partial groupoid. ====Basic results==== ====Properties==== ^[[Classtype]] |first-order | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] | | ^[[Congruence modular]] | | ^[[Congruence $n$-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &2\\ f(2)= &45\\ f(3)= &43968\\ f(4)= &6358196250\\ f(5)= &236919104155855296\\ \end{array}$ See http://oeis.org/A090601 ====Subclasses==== [[Groupoids]] [[Partial semigroups]] ====Superclasses==== [[Ternary relations]] ====References==== [(Ljapin1997> E. S. Ljapin and A. E. Evseev, \emph{The theory of partial algebraic operations}, Kluwer, 1997 )]