=====Regular semigroups===== Abbreviation: **RSgrp** ====Definition==== An element $x$ of a semigroup $S$ is said to be \emph{regular} if exists $y$ in $S$ such that $xyx=x$. ====Definition==== A \emph{regular semigroup} is a [[semigroups]] $\mathbf{S}=\langle S,\cdot \rangle $ such that each element is regular. ====Definition==== A \emph{regular semigroup} is a structure $\mathbf{S}=\langle S,\cdot \rangle $, where $\cdot $ is an infix binary operation, called the \emph{semigroup product}, such that $\cdot $ is associative: $(xy)z=x(yz)$ each element is \emph{regular}: $\exists y(xyx=x)$ ====Definition==== We say that $y$ is an \emph{inverse} of an element $x$ in a semigroup $S$ if $x=xyx$ and $y=yxy$. ==Morphisms== Let $\mathbf{S}$ and $\mathbf{T}$ be regular semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:Sarrow T$ that is a homomorphism: $h(xy)=h(x)h(y)$ ====Examples==== Example 1: $\langle T_X,\circ\rangle $, the \emph{full transformation semigroup} of functions on $X$, with composition. $\langle End(V),\circ\rangle $, the \emph{endomorphism monoid} of a vector space $V$, with composition. ====Basic results==== If $x$ is a regular element of a semigroup (say $x=xyx$), then $x$ has an inverse, namely $yxy$, since $x=x(yxy)x$ and $yxy=(yxy)x(yxy)$. ====Properties==== ^[[Classtype]] |First-order | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] |No | ^[[Residual size]] | | ^[[Congruence distributive]] |No | ^[[Congruence modular]] | | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] |No | ^[[Amalgamation property]] |No | ^[[Strong amalgamation property]] |No | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &3\\ f(3)= &9\\ f(4)= &42\\ f(5)= &206\\ f(6)= &1352\\ f(7)= &10168\\ f(8)= &91073\\ f(9)= &925044 \end{array}$ (the opposite of a semigroup $S$ is identified with $S$ in the table above, see https://oeis.org/A001427) ====Subclasses==== [[Bands]] [[Inverse semigroups]] [[Completely regular semigroups]] ====Superclasses==== [[Semigroups]] \begin{bibdiv} \begin{biblist} \bib{MR1455373}{book}{ author={Howie, John M.}, title={Fundamentals of semigroup theory}, series={London Mathematical Society Monographs. New Series}, volume={12}, note={Oxford Science Publications}, publisher={The Clarendon Press Oxford University Press}, place={New York}, date={1995}, pages={x+351}, isbn={0-19-851194-9}, review={\MR{1455373 (98e:20059)}}, } \end{biblist} \end{bibdiv}