=====Semirings with identity and zero===== Abbreviation: **SRng**$_{01}$ ====Definition==== A \emph{semiring with identity and zero} is a structure $\mathbf{S}=\langle S,+,0,\cdot,1 \rangle $ of type $\langle 2,0,2,0\rangle $ such that $\langle S,+,0\rangle $ is a [[commutative monoids]] $\langle S,\cdot,1\rangle$ is a [[monoids]] $0$ is a zero for $\cdot$: $0\cdot x=0$, $x\cdot 0=0$ $\cdot$ distributes over $+$: $x\cdot(y+z)=x\cdot y+x\cdot z$, $(y+z)\cdot x=y\cdot x+z\cdot x$ ==Morphisms== Let $\mathbf{S}$ and $\mathbf{T}$ be semirings with identity and zero. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a homomorphism: $h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(0)=0$, $h(1)=1$ ====Examples==== Example 1: ====Basic results==== ====Properties==== ^[[Classtype]] |variety | ^[[Equational theory]] |decidable | ^[[Quasiequational theory]] | | ^[[First-order theory]] |undecidable | ^[[Locally finite]] |no | ^[[Residual size]] |unbounded | ^[[Congruence distributive]] |no | ^[[Congruence modular]] |no | ^[[Congruence n-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= & 1\\ f(2)= & 2\\ f(3)= & 6\\ f(4)= & 40\\ f(5)= & 295\\ f(6)= &3246\\ \end{array}$ ====Subclasses==== [[Idempotent semirings with identity and zero]] [[Rings with identity]] ====Superclasses==== [[Semirings with zero]] [[Semirings with identity]] ====References==== [(Ln19xx> )]