[[Syntax]] | [[Terms]] | [[Equations]] | [[Horn formulas]] | [[Universal formulas]] | [[First-order formulas]] | [[Theories]] ==== Variables ==== $x$ $y$ $z$ $u$ $v$ $w$ $x_0$ $x_1$ $x_2$ ... ==== Operation symbols ==== ***Constant symbols** *$a$ $b$ $c$ $d$ $e$ $\bot$ $\top$ $\emptyset$ $\infty$ $0$-$9$ $\alpha-\omega$ ***Unary operation symbols** *Prefix: $f$ $g$ $h$ $-$ $\neg$ $\sim$ *Postfix: $'$ ${}^{-1}$ ${}^{\cup}$ ***Binary operation symbols** *Prefix: $f$ $g$ $h$ *Infix: $+$ $-$ $*$ $\cdot$ $\times$ $\div$ $/$ $\backslash$ $\circ$ $\oplus$ $\otimes$ $\odot$ $\wedge$ $\vee$ $\to$ ***Ternary operation symbols** *Prefix: $t$ ***Quadternary operation symbols** *Prefix: $q$ *$n$**-ary operation symbols** *Prefix: $\sum_n$ $\prod_n$ *Mixfix: { } [ ] ( ) *$\omega$**-ary operation symbols** *$\sum_\omega$ $\prod_\omega$ *$\kappa$**-ary operation symbols** *$\sum_\kappa$ $\prod_\kappa$ *$\infty$**-ary operation symbols** *$\sum$ $\prod$ $\bigcap$ $\bigcup$ $\bigwedge$ $\bigvee$ ==== Relation symbols ==== ***0-ary relation symbols** *Propositions ⊥ ⊤ T F ***Unary relation symbols** *Prefix: P Q ***Binary relation symbols** *Prefix: R *Infix: = ≠ ≤ < ≥ > ⪯ ≺ ⪰ ≻ ≡ ≅ ≈ ∈ ∉ ***Ternary relation symbols** ***Quadternary relation symbols** ***n-ary relation symbols** ***ω-ary relation symbols** ***κ-ary relation symbols** ***∞-ary relation symbols** ==== Connectives ==== ***0-ary connectives** ***Unary connectives** *⋄ □ ***Binary connectives** *Infix: and ∧ or ∨ ⇒ ⇔ *Mixfix: if_then_   while_do_ ***Ternary connectives** *if_then_else_ ***Quadternary connectives** ***n-ary connectives** ***ω-ary connectives** ***κ-ary connectives** ***∞-ary connectives** ==== Quantifiers ==== *∀ ∃ ==== Delimiters ==== *( ) [ ] { } 〈 〉 ==== Signatures / Languages ==== A signature or language is a sequence of operation symbols, relation symbols and connectives. Prefix symbols always apply first. Infix symbols and postfix symbols can In a typed (or multisorted) language the input/output slots of operation symbols and relation symbols are associated to a specific type. In an order-sorted language the types form a partially ordered set that determines the subtyping relation.