=====Name of class===== Abbreviation: **TarskiA** ====Definition==== A \emph{Tarski algebra} is a structure $\mathbf{A}=\langle A,\to\rangle$ of type $\langle 2\rangle$ such that $\to$ satisfies the following identities: $(x\to y)\to x=x$ $(x\to y)\to y=(y\to x)\to x$ $x\to(y\to z)=y\to(x\to z)$ ==Morphisms== Let $\mathbf{A}$ and $\mathbf{B}$ be Tarski algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \to y)=h(x) \to h(y)$ ====Examples==== Example 1: $\langle\{0,1\},\to\rangle$ where $x\to y=0$ iff $x=1$ and $y=0$. ====Basic results==== Tarski algebras are the implication subreducts of Boolean algebras. ====Properties==== Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described. ^[[Classtype]] | variety | ^[[Equational theory]] | | ^[[Quasiequational theory]] | | ^[[First-order theory]] | | ^[[Locally finite]] | | ^[[Residual size]] | | ^[[Congruence distributive]] | | ^[[Congruence modular]] | | ^[[Congruence $n$-permutable]] | | ^[[Congruence regular]] | | ^[[Congruence uniform]] | | ^[[Congruence extension property]] | | ^[[Definable principal congruences]] | | ^[[Equationally def. pr. cong.]] | | ^[[Amalgamation property]] | | ^[[Strong amalgamation property]] | | ^[[Epimorphisms are surjective]] | | ====Finite members==== $\begin{array}{lr} f(1)= &1\\ f(2)= &\\ f(3)= &\\ f(4)= &\\ f(5)= &\\ \end{array}$ $\begin{array}{lr} f(6)= &\\ f(7)= &\\ f(8)= &\\ f(9)= &\\ f(10)= &\\ \end{array}$ ====Subclasses==== [[...]] subvariety [[...]] expansion ====Superclasses==== [[...]] supervariety [[...]] subreduct ====References==== [(Ln19xx> F. Lastname, \emph{Title}, Journal, \textbf{1}, 23--45 [[MRreview]] )]