Abbreviation: Bilat
A \emph{bilattice} is a structure $\mathbf{L}=\langle L,\vee,\wedge,\oplus,\otimes,\neg\rangle$ such that
$\langle L,\vee,\wedge\rangle $ is a lattice,
$\langle L,\oplus,\otimes\rangle $ is a lattice,
$\neg$ is a De Morgan operation for $\vee$, $\wedge$: $\neg(x\vee y)=\neg x\wedge\neg y$, $\neg\neg x=x$ and
$\neg$ commutes with $\oplus$, $\otimes$: $\neg(x\oplus y)=\neg x\oplus\neg y$, $\neg(x\otimes y)=\neg x\otimes\neg y$.
Let $\mathbf{L}$ and $\mathbf{M}$ be bilattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\rightarrow M$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\oplus y)=h(x)\oplus h(y)$, $h(x\otimes y)=h(x)\otimes h(y)$, $h(\neg x)=\neg h(x)$
Example 1:
$\begin{array}{lr}
f(1)= &1
f(2)= &0
f(3)= &0
f(4)= &1
f(5)= &3
f(6)= &32
f(7)= &284
f(8)= &
f(9)= &
f(10)= &
\end{array}$