A \emph{chain} is a partially ordered set $\mathbf{C}=\langle C,\le\rangle$ such that
$\le$ is a total order: $x\le y \mbox{ or } y\le x$
Remark:
Let $\mathbf{C}$ and $\mathbf{D}$ be chains. A morphism from $\mathbf{C}$ to $\mathbf{D}$ is a function $h:C\rightarrow D$ that is a orderpreserving:
$x\le y\Longrightarrow h(x)\le h(y)$
Example 1:
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &1
f(4)= &1
f(5)= &1
f(6)= &1
\end{array}$