Abbreviation: CRRng
A \emph{commutative regular ring} is a regular rings $\mathbf{R}=\langle R,+,-,0,\cdot,1 \rangle$ such that $\cdot$ is commutative: $x\cdot y=y\cdot x$
Let $\mathbf{R}$ and $\mathbf{S}$ be commutative regular rings. A morphism from $\mathbf{R}$ to $\mathbf{S}$ is a function $h:R\rightarrow S$ that is a homomorphism:
$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(1)=1$
Example 1:
$\begin{array}{lr}
f(1)= &1
f(2)= &
f(3)= &
f(4)= &
f(5)= &
f(6)= &
\end{array}$