Table of Contents

Groupoids

Abbreviation: Grpd

Definition

A \emph{groupoid} is a category $\mathbf{C}=\langle C,\circ,\text{dom},\text{cod}\rangle$ such that

every morphism is an isomorphism: $\forall x\exists y\ x\circ y=\text{dom}(x)\text{ and }y\circ x=\text{cod}(x)$

Morphisms

Let $\mathbf{C}$ and $\mathbf{D}$ be Schroeder categories. A morphism from $\mathbf{C}$ to $\mathbf{D}$ is a function $h:C\rightarrow D$ that is a \emph{functor}: $h(x\circ y)=h(x)\circ h(y)$, $h(\text{dom}(x))=\text{dom}(h(x))$ and $h(\text{cod}(x))=\text{cod}(h(x))$.

Remark: These categories are also called \emph{Brandt groupoids}.

Examples

Example 1:

Basic results

Properties

Feel free to add or delete properties from this list. The list below may contain properties that are not relevant to the class that is being described.

Finite members

$\begin{array}{lr}

f(1)= &1\\
f(2)= &2\\
f(3)= &3\\
f(4)= &7\\
f(5)= &9\\
f(6)= &16\\
f(7)= &22\\
f(8)= &42\\
f(9)= &57\\
f(10)= &90\\

\end{array}$

http://oeis.org/A140189

Subclasses

Groups

Superclasses

Categories

References