Table of Contents

Idempotent semirings with identity and zero

Abbreviation: ISRng$_{01}$

Definition

An \emph{idempotent semiring with identity and zero} is a semirings with identity and zero $\mathbf{S}=\langle S,\vee,0,\cdot,1 \rangle $ such that $\vee$ is idempotent: $x\vee x=x$

Morphisms

Let $\mathbf{S}$ and $\mathbf{T}$ be idempotent semirings with identity and zero. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\rightarrow T$ that is a homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(0)=0$, $h(1)=1$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= & 1
f(2)= & 1
f(3)= & 3
f(4)= & 20
f(5)= & 149
f(6)= &1488
f(7)= &18554 \end{array}$

Subclasses

Kleene algebras

Superclasses

Idempotent semirings with zero

Idempotent semirings with identity

Semirings with identity and zero

References