Abbreviation: IInFL
An \emph{integral involutive FL-algebra} or \emph{integral involutive residuated lattice} is an involutive residuated lattice that is
integral: $x\vee 1 = 1$
Let $\mathbf{A}$ and $\mathbf{B}$ be involutive residuated lattices. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism: $h(x \vee y)=h(x) \vee h(y)$, $h(x \cdot y)=h(x) \cdot h(y)$, $h({\sim}x)={\sim}h(x)$ and $h(1)=1$.
Example 1:
$\begin{array}{lr}
f(1)= &1\\ f(2)= &1\\ f(3)= &1\\ f(4)= &3\\ f(5)= &3\\
\end{array}$ $\begin{array}{lr}
f(6)= &12\\ f(7)= &17\\ f(8)= &78\\ f(9)= &\\ f(10)= &\\
\end{array}$
Cyclic integral involutive FL-algebras subvariety
Involutive FL-algebras supervariety