Abbreviation: OckA
An \emph{Ockham algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\wedge ,1,'\rangle $ such that
$\langle A,\vee ,0,\wedge ,1\rangle $ is a bounded distributive lattice
$'$ is a dual endomorphism: $(x\wedge y)' =x'\vee y'$, $ (x\vee y)' =x'\wedge y'$, $ 0'=1$, $1'=0$
Let $\mathbf{A}$ and $\mathbf{B}$ be Ockham algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(x')=h(x)'$, $h(0)=0$, $h(1)=1$
Example 1:
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &2
f(4)= &
f(5)= &
f(6)= &
f(7)= &
f(8)= &
f(9)= &
f(10)= &
\end{array}$
1)\end{document} %</pre>