Abbreviation: RSgrp
An element $x$ of a semigroup $S$ is said to be \emph{regular} if exists $y$ in $S$ such that $xyx=x$.
A \emph{regular semigroup} is a semigroups $\mathbf{S}=\langle S,\cdot \rangle $ such that each element is regular.
A \emph{regular semigroup} is a structure $\mathbf{S}=\langle S,\cdot \rangle $, where $\cdot $ is an infix binary operation, called the \emph{semigroup product}, such that
$\cdot $ is associative: $(xy)z=x(yz)$
each element is \emph{regular}: $\exists y(xyx=x)$
We say that $y$ is an \emph{inverse} of an element $x$ in a semigroup $S$ if $x=xyx$ and $y=yxy$.
Let $\mathbf{S}$ and $\mathbf{T}$ be regular semigroups. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:Sarrow T$ that is a homomorphism:
$h(xy)=h(x)h(y)$
Example 1: $\langle T_X,\circ\rangle $, the \emph{full transformation semigroup} of functions on $X$, with composition.
$\langle End(V),\circ\rangle $, the \emph{endomorphism monoid} of a vector space $V$, with composition.
If $x$ is a regular element of a semigroup (say $x=xyx$), then $x$ has an inverse, namely $yxy$, since $x=x(yxy)x$ and $yxy=(yxy)x(yxy)$.
$\begin{array}{lr}
f(1)= &1
f(2)= &3
f(3)= &9
f(4)= &42
f(5)= &206
f(6)= &1352
f(7)= &10168
f(8)= &91073
f(9)= &925044
\end{array}$
(the opposite of a semigroup $S$ is identified with $S$ in the table above, see https://oeis.org/A001427)
\begin{bibdiv} \begin{biblist}
\bib{MR1455373}{book}{
author={Howie, John M.}, title={Fundamentals of semigroup theory}, series={London Mathematical Society Monographs. New Series}, volume={12}, note={Oxford Science Publications}, publisher={The Clarendon Press Oxford University Press}, place={New York}, date={1995}, pages={x+351}, isbn={0-19-851194-9}, review={\MR{1455373 (98e:20059)}},
}
\end{biblist} \end{bibdiv}