Table of Contents

Semirings

Abbreviation: SRng

Definition

A \emph{semiring} is a structure $\mathbf{S}=\langle S,+,\cdot \rangle $ of type $\langle 2,2\rangle $ such that

$\langle S,\cdot\rangle$ is a semigroup

$\langle S,+\rangle $ is a commutative semigroup

$\cdot$ distributes over $+$: $x\cdot(y+z)=x\cdot y+x\cdot z$, $(y+z)\cdot x=y\cdot x+z\cdot x$

Morphisms

Let $\mathbf{S}$ and $\mathbf{T}$ be semirings. A morphism from $\mathbf{S}$ to $\mathbf{T}$ is a function $h:S\to T$ that is a homomorphism:

$h(x+y)=h(x)+h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &10
f(3)= &132
f(4)= &2341
f(5)= &
f(6)= &
\end{array}$

Subclasses

Idempotent semirings

Semirings with identity

Semirings with zero

Superclasses

Commutative semigroups

References