A \emph{Wajsberg hoop} is a hoop $\mathbf{A}=\langle A, \cdot, \rightarrow, 1\rangle$ such that
$(x\rightarrow y)\rightarrow y = (y\rightarrow x)\rightarrow x$
Remark: Lattice operations are term-definable by $x\wedge y=x\cdot(x\rightarrow y)$ and $x\vee y=(x\rightarrow y)\rightarrow y$.
Let $\mathbf{A}$ and $\mathbf{B}$ be Wajsberg hoops. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\rightarrow B$ that is a homomorphism:
$h(x\cdot y)=h(x)\cdot h(y)$, $h(x\rightarrow y)=h(x)\rightarrow h(y) $, $h(1)=1$
Example 1:
Classtype | variety |
---|---|
Equational theory | decidable |
Quasiequational theory | |
First-order theory | |
Locally finite | no |
Residual size | |
Congruence distributive | yes |
Congruence modular | yes |
Congruence n-permutable |
Congruence regular & yes Radim Belohlovek, \emph{On the regularity of MV-algebras and Wajsberg hoops}, Algebra Universalis, \textbf{44}, 2000, 375–377MRreview\\\hline
$\begin{array}{lr}
f(1)= &1
f(2)= &1
f(3)= &
f(4)= &
f(5)= &
f(6)= &
f(7)= &
\end{array}$