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Digression 1: Classes of infinitary logics

A logic L has the
CIPEP (completely ∩-prime extension property) if

completely ∩-prime theories form a basis of Th(L)
IPEP (∩-prime ext. property) if ∩-prime theories form a basis of Th(L)

Theorem
Given any algebraizable logic L and theory T, we have:

1 LindTT ∈ ALG∗(L)RSI iff T is completely ∩-prime.

2 LindTT ∈ ALG∗(L)RFSI iff F is ∩-prime.

Want to know more? sites.google.com/site/lavickathomas/research
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A logic L has the
CIPEP (completely ∩-prime extension property) if

completely ∩-prime theories form a basis of Th(L)
IPEP (∩-prime ext. property) if ∩-prime theories form a basis of Th(L)

A logic L is

RSI-complete if L = |=MOD∗(L)RSI

RFSI-complete if L = |=MOD∗(L)RFSI

Want to know more? sites.google.com/site/lavickathomas/research
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Three kinds of disjunction

A connective ∨ (primitive of defined) is called strong disjunction in ` if:

ϕ ` ϕ ∨ ψ ψ ` ϕ ∨ ψ (PD)

Γ,Φ ` χ Γ,Ψ ` χ

Γ, {ϕ ∨ ψ | ϕ ∈ Φ, ψ ∈ Ψ} ` χ
(sPCP)
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Three kinds of disjunction

A connective ∨ (primitive of defined) is called disjunction in ` if:

ϕ ` ϕ ∨ ψ ψ ` ϕ ∨ ψ (PD)

Γ, ϕ ` χ Γ, ψ ` χ

Γ, ϕ ∨ ψ ` χ
(PCP)

In a finitary logic each disjunction is strong but not vice-versa

If ∨ is a disjunction, then T is prime iff ϕ ∨ ψ ∈ T implies ϕ ∈ T or ψ ∈ T.
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Three kinds of disjunction

A connective ∨ (primitive of defined) is called weak disjunction in ` if:

ϕ ` ϕ ∨ ψ ψ ` ϕ ∨ ψ (PD)

ϕ ` χ ψ ` χ

ϕ ∨ ψ ` χ
(wPCP)

There is finitary logic with a weak disjunction but no disjunction

Note that a weak disjunction suffices for a meaningful definition of 
L:

Γ 
L ∆ iff there is a finite non-empty ∆′ ⊆ ∆ and Γ `L

∨
∆′.
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Three kinds of disjunction

A connective ∨ is weak disjunction in ` iff:

ThL(ϕ) ∩ ThL(ψ) = ThL(ϕ ∨ ψ)

Thus the intersection of two principal theories is principal
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Some characterizations

Let L be a logic with axiomatization AS. Then ∨ is a strong disjunction iff

ϕ `L ϕ ∨ ψ ϕ ∨ ψ `L ψ ∨ ϕ ϕ ∨ ϕ `L ϕ

{γ ∨ χ | γ ∈ Γ} `L ϕ ∨ χ for each Γ B ϕ from AS
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Digression 2: Łukasiwicz logic and its relatives

[0, 1]Ł: the standard MV-algebra with domain [0, 1] and operations

x→ y = min{1, 1 − x + y}

x & y = max{0, x + y − 1}

x ∨ y = max{x, y}

¬x =1 − x

Ł: the logic axiomatized by modus ponens and 4 Łukasiewicz axioms

Fact: the equivalence Γ `Ł ϕ iff Γ |=[0,1]Ł ϕ holds for finite Γs only

BTLSMVA: the extension of Ł by the rule

{¬ϕ→ ϕ& n. . . &ϕ | n ≥ 1} B ϕ

Fact?: Γ `BTLSMVA ϕ iff Γ |=[0,1]Ł ϕ holds for all Γs.
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Proving completeness of BTLSMVA

1) We know that it is countably axiomatizable

2) And ∨ is its strong disjunction

We can easily show that it is a strong disjunction in Ł:

ϕ `Ł ϕ∨ψ ϕ∨ψ `Ł ψ∨ ϕ ϕ∨ ϕ `Ł ϕ ϕ∨ χ, (ϕ→ ψ)∨ χ `Ł ψ∨ χ

Thus we can show that:

¬ϕ→ ϕn `Ł ¬(ϕ ∨ χ)→ (ϕ ∨ χ)n χ `Ł ¬(ϕ ∨ χ)→ (ϕ ∨ χ)n

(¬ϕ→ ϕn) ∨ χ `Ł ¬(ϕ ∨ χ)→ (ϕ ∨ χ)n

Then {(¬ϕ→ ϕn) ∨ χ | n ≥ 0} `Ł∞ ϕ ∨ χ
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Proving completeness of BTLSMVA

1) We know that it is countably axiomatizable

2) And ∨ is its strong disjunction

3) Thus if Γ 0BTLSMVA ϕ, there is a prime theory T ⊇ Γ st. ϕ < T

Take Lindenbaum-Tarski algebra of T: we know it is relatively finitely
subdirectly irreducible BTLSMVA-algebra

Thus it is a simple MV-chain and so it us embeddable into [0, 1]Ł
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Back to work: some more characterizations

Let us consider a logic L with a weak disjunction ∨. TFAE

1 ∨ is a strong disjunction
2 for each rule Γ B ϕ of some axiomatic system of L we have:

{γ ∨ χ | γ ∈ Γ} ` ϕ ∨ χ

3 
L enjoys the Strong-Cut for finite ∆s, i.e.,

{Γ 
L ∆ ∪ {ϕ} | ϕ ∈ Φ} Γ ∪ Φ 
L ∆

Γ 
L ∆
.

4 the lattice of all theories is a frame, i.e.,

T ∩
∨
S∈S

S =
∨
S∈S

(T ∩ S).
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Digression 3: logics and disjunctions
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An alternative summary of Part I

Let L be countably axiomatizable logics with a weak disjunction ∨. TFAE

1 
L has the Pair Extension Property for finite ∆s.

2 
L enjoys the Strong-Cut for finite ∆s.

3 ∨ is a strong disjunction.

Let L be countably axiomatizable logics with a weak disjunction ∨. TFAE
1 
L has the Pair Extension Property.
2 
L enjoys the Strong-Cut.
3 L is finitary.
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Pair extension implies Strong-Cut

We want to show that

{Γ 
L ∆ ∪ {ϕ} | ϕ ∈ Φ} Γ ∪ Φ 
L ∆

Γ 
L ∆
.

Assume that Γ 1L ∆ and 〈Γ′,∆′〉 is the full pair extending 〈Γ,∆〉

If Φ ⊆ Γ′, then Γ ∪ Φ 1L ∆, a contradiction.

Let ϕ ∈ Φ \ Γ′, then Γ 1L ∆ ∪ {ϕ}, a contradiction.
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Strong Cut implies finitarity

Consider {γ1, γ2, . . . } B ϕ is proper infinitary rule

∆ = {p1, p2, . . . }: infinite set of variables not occurring in {ϕ, γ1, γ2, . . . }

Claim: there is n such that

{γi ∨ pi | i ≥ 1} `L ϕ ∨ p1 ∨ · · · ∨ pn

To prove the claim we simply use Strong-Cut to obtain:

{{γi ∨ pi | i ≥ 1} 
L ∆ ∪ {γi} | i ≥ 1} {γ1, γ2, . . . } 
L {ϕ}

{γi ∨ pi | i ≥ 1} 
L ∆ ∪ {ϕ}
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Strong Cut implies finitarity

Consider {γ1, γ2, . . . } B ϕ is proper infinitary rule

∆ = {p1, p2, . . . }: infinite set of variables not occurring in {ϕ, γ1, γ2, . . . }

Claim: there is n such that

{γi ∨ pi | i ≥ 1} `L ϕ ∨ p1 ∨ · · · ∨ pn

Now we consider a substitution σ:

σ(p) =


p if p < ∆

ϕ if p = pi for i ≤ n
γn if p = pi for i > n

{γ1 ∨ ϕ, . . . , γn ∨ ϕ} ∪ {γi ∨ γn | i > n} `L ϕ ∨ ϕ ∨ · · · ∨ ϕ

{γ1, . . . , γn} `L ϕ
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Lets us generalize our setting now
First we drop the structurality assumption

Then we try to live without disjunction . . .

For each logic `L with we define a relation 
L:

Γ 
L ∆ iff there is a finite ∆′ ⊆ ∆ and
⋂
ψ∈∆′

ThL(ψ) ⊆ ThL(Γ)

To make it work we need to assume two things: . . .

1) Intersection of two finitely generated theories is finitely generated

2) L is framal, i.e. the lattice of its theories is a frame:

T ∩
∨
S∈S

S =
∨
S∈S

(T ∩ S).
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Properties of symmetrizations of framal logics
Assume that `L is framal, then:

1. If 〈Γ,∆〉 is a full pair, then Γ is prime theory and
if Γ is a prime theory, then 〈Γ,Fm \ Γ〉 is full pair

Proof: Clearly Γ is a theory; assume it is reducible, then for some ϕ, ψ < Γ:

Γ = ThL(Γ ∪ {ϕ}) ∩ ThL(Γ ∪ {ψ})

= (Γ ∨ ThL(ϕ)) ∩ (Γ ∨ ThL(ψ))

= Γ ∨ (ThL(ϕ) ∩ ThL(ψ))

As ϕ, ψ ∈ ∆ we have contradiction with Γ 1L ∆
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Properties of symmetrizations of framal logics
Assume that `L is framal, then:

1. If 〈Γ,∆〉 is a full pair, then Γ is prime theory and
if Γ is a prime theory, then 〈Γ,Fm \ Γ〉 is full pair

2. 
L enjoys the Strong-Cut for finite ∆s:

{Γ 
L ∆ ∪ {ϕ} | ϕ ∈ Φ} Γ ∪ Φ 
L ∆

Γ 
L ∆
.

Let us set D =
⋂
δ∈∆ ThL(δ) then D ⊆ ThL(Γ) ∨ ThL(Φ) and for each ϕ ∈ Φ:

D ∩ ThL(ϕ) ⊆ ThL(Γ)

D ∩ ThL(Φ) = D ∩
∨
ϕ∈Φ

ThL(ϕ) =
∨
ϕ∈Φ

D ∩ ThL(ϕ) ⊆ ThL(Γ)

Thus D ⊆ ThL(Γ), i.e., Γ 
L ∆
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A more general result

Theorem (Lindenbaum Lemma for certain infinitary structural logics)
Let ` be a countably axiomatizable structural logic with a strong
disjunction.

If Γ 0 ϕ, then there is a prime theory T ⊇ Γ such that ϕ < T.
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A more general result

Theorem (Lindenbaum Lemma for certain infinitary logics)
Let ` be a countably axiomatizable logic which is framal and the
intersection of two finitely generated theories if finitely generated.

If Γ 0 ϕ, then there is a prime theory T ⊇ Γ such that ϕ < T.
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The proof is almost the same . . .

Enumerate all rules Λi B ϕi

Define increasing sequence of pairs 〈Γi,∆i〉 starting with 〈Γ0,∆0〉 = 〈Γ,∆〉

Induction step, we distinguish two cases:

If 〈Γi ∪ {ϕi},∆i〉 is a pair, then 〈Γi+1,∆i+1〉 = 〈Γi ∪ {ϕi},∆i〉.

If 〈Γi ∪ {ϕi},∆i〉 is not a pair, then there has to be χi ∈ Λi such that
〈Γi,∆i ∪ {χi}〉 is a pair so we set 〈Γi+1,∆i+1〉 = 〈Γi,∆i ∪ {χi}〉.

Why there is such χi?

{Γi 
 ∆i ∪ {ϕi} ∪ {χi} | χi ∈ Λi} Γi ∪ Λi 
 ∆i ∪ {ϕi}

Γi 
 ∆i ∪ {ϕi}
Γi ∪ {ϕi} 
 ∆i

Γi 
 ∆i

Assume that we have a ‘dummy’ rule ψ B ψ, thus each ψ is in some Γi or ∆i
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Proof (cont.) define Γ′ =
⋃

Γi and ∆′ =
⋃

∆i

Claim: for each ψ we have: if Γ′ ` ψ than ψ ∈ Γj for some j.

Proof of the Claim: let us fix a proof of ψ from Γ′; we prove it for each
formula labeling some of its nodes

If the node is a leaf the claim is trivial

Consider node obtained using rule Λi B ϕi

If we proceed by the first case in our induction step we have ϕi ∈ Γi+1

Assume we proceed by the second case: then χi ∈ Λi ∩ ∆i+1

As Γ′ ` χi (it labels a node preceding ϕi), then by IP: Γj ` χi for some j

Thus Γmax{i+1,j} 
L ∆max{i+1,j}, a contradiction.
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Proof (cont.) define Γ′ =
⋃

Γi and ∆′ =
⋃

∆i

Claim: for each ψ we have: if Γ′ ` ψ than ψ ∈ Γj for some j.

The conclusion of the proof: we prove that 〈Γ′,∆′〉 is a pair.

If not then
⋂
ϕ∈∆′′ ThL(ϕ) ⊆ ThL(Γ′) for some finite ∆′′ ⊆ ∆′.

We know that
⋂
ϕ∈∆′′ ThL(ϕ) = ThL(D) for some finite D

Thus by the Claim there is j such that: Γj ` δ for each δ ∈ D

Then
⋂
ϕ∈∆′′ ThL(ϕ) = ThL(D) ⊆ ThL(Γj)

As ∆′′ ⊆ ∆i for some i we have a contradiction:

Γmax{i,j} 
L ∆max{i,j}.
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Digression 4: some incoherent thoughts

on countable axiomatizability

on relation to the proof of existence of Henkin extension

on relation to Rasiowa–Sikorski Lemma
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Closure operators on lattices

Let U be a algebraic lattice, C is closure operator on U if

x ≤ y implies C(x) ≤ c(y)

x ≤ C(x)

C(x) = C(C(x))

We say that C is algebraic if K(U) = compact elements of U

C(x) =
∨

y≤ x, y ∈K(U)

C(y)

The image of C is a complete meet-subsemilattice C of U, where

x ∨C y = c(x ∨C y)
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Lindenbaum lemma in this setting

Theorem (Abstracter Lindenbaum lemma)
Let C be an algebraic closure operator on algebraic lattice U.
Then each element of C is a meet of meet-irreducible elements of C.

Theorem (Abstracter ‘our’ Lindenbaum lemma)
Let C be a closure operator on algebraic lattice U such that

C is countably axiomatizable

C is a frame

C[K(U)] is a subuniverse of C
Then each element of C is a meet of meet-irreducible elements of C.
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Axiomatizable ???
As U is algebraic we always have:

C(x) =
∨

y≤C(x), y ∈K(U)

y

Axiomatic system A: a collection of pairs x B y where y ∈ K(U)

Proof of y from x: a well-founded tree labeled by elements of K(U) st

its root is labeled by y and leaves by elements z ≤ x and

if a node is labeled by z and D is the set of labels of its preceding
nodes, then

∨
D B z ∈ A

We define:
CA(x) =

∨
x `A y, y ∈K(U)

y

Then CA is the least co C on U s.t. for each x B y ∈ A we have y ≤ C(x).

Note: C = C{xBy | y ∈K(U), y≤C(x)}.
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M-Logic

Logic: a relation ` between sets of formulas and formulas st:

{ϕ} ` ϕ. (Reflexivity)

If Γ ` ϕ, then Γ ∪ ∆ ` ϕ (Monotonicity)

If ∆ ` ψ for each ψ ∈ Γ and Γ ` ϕ, then ∆ ` ϕ (Cut)

Some logics could satisfy additional property:

If Γ ` ϕ, then Γ′ ` ϕ for some finite Γ′ ⊆ Γ (Finitarity)
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M-Logic

M-Logic: a relation 
 between sets of formulas and sets of formulas st:

{ϕ} 
 {ϕ} (Reflexivity)

If Γ 
 ∆, then Γ ∪ Σ 
 ∆ ∪ Σ′ (Monotonicity)

If Γ,Σ 
 ∆,Fm \ Σ for each Σ ⊆ Fm, then Γ 
 ∆ (PEP)

Some m-logics could satisfy additional properties:

If Γ 
 ∆, then Γ′ 
 ∆ for some finite Γ′ ⊆ Γ (Left-Finitarity)

If Γ 
 ∆, then Γ 
 ∆′ for some finite ∆′ ⊆ ∆ (Right-Finitarity)
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Variants of Cut rule

Any m-logic 
 has the Strong-Cut:

{Γ 
 ∆ ∪ {ϕ} | ϕ ∈ Φ} Γ ∪ Φ 
 ∆

Γ 
 ∆
.

But not vice-versa!

In presence of both finitarity conditions, the PEP can be equivalently
replaced simply by:

Γ 
 ∆ ∪ {ϕ} Γ ∪ {ϕ} 
 ∆

Γ 
 ∆
.
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Possible symmetrizations of a logic `L

Γ 
1
L ∆ iff there is δ ⊆ ∆ and Γ `L δ

Γ 
1
L ∆ iff there is δ′ ⊆ ∆ and ThL(δ) ⊆ ThL(Γ)

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and Γ `L

∨
∆′

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and

⋂
δ∈∆′

ThL(δ) ⊆ ThL(Γ)

Γ 
ωL ∆ iff
⋂
δ∈∆

ThL(δ) ⊆ ThL(Γ)

Γ 
sw
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} there is δ ∈ ∆ s.t. e(δ) = 1

Γ 
s
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} we have sup

δ∈∆
e(δ) = 1

In structural setting: 
fin
L is (finitary) m-logic iff L is finitary


sw
L is always m-logic
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Possible symmetrizations of a logic `L

Γ 
1
L ∆ iff there is δ ⊆ ∆ and Γ `L δ

Γ 
1
L ∆ iff there is δ′ ⊆ ∆ and ThL(δ) ⊆ ThL(Γ)

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and Γ `L

∨
∆′

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and

⋂
δ∈∆′

ThL(δ) ⊆ ThL(Γ)

Γ 
ωL ∆ iff
⋂
δ∈∆

ThL(δ) ⊆ ThL(Γ)

Γ 
sw
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} there is δ ∈ ∆ s.t. e(δ) = 1

Γ 
s
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} we have sup

δ∈∆
e(δ) = 1

Relationships (some inclusions require certain framework):


1
L ( 


fin
L ( 


sw
L ( 


ω
L 
sw

L ( 

s
L
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Possible symmetrizations of a logic `L

Γ 
1
L ∆ iff there is δ ⊆ ∆ and Γ `L δ

Γ 
1
L ∆ iff there is δ′ ⊆ ∆ and ThL(δ) ⊆ ThL(Γ)

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and Γ `L

∨
∆′

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and

⋂
δ∈∆′

ThL(δ) ⊆ ThL(Γ)

Γ 
ωL ∆ iff
⋂
δ∈∆

ThL(δ) ⊆ ThL(Γ)

Γ 
sw
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} there is δ ∈ ∆ s.t. e(δ) = 1

Γ 
s
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} we have sup

δ∈∆
e(δ) = 1

Note that 
sw
CL can be given syntactically

Γ 
sw
CL ∆ iff Γ, {¬δ | δ ∈ ∆} `CL ⊥
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Possible symmetrizations of a logic `L

Γ 
1
L ∆ iff there is δ ⊆ ∆ and Γ `L δ

Γ 
1
L ∆ iff there is δ′ ⊆ ∆ and ThL(δ) ⊆ ThL(Γ)

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and Γ `L

∨
∆′

Γ 
fin
L ∆ iff there is a finite ∆′ ⊆ ∆ and

⋂
δ∈∆′

ThL(δ) ⊆ ThL(Γ)

Γ 
ωL ∆ iff
⋂
δ∈∆

ThL(δ) ⊆ ThL(Γ)

Γ 
sw
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} there is δ ∈ ∆ s.t. e(δ) = 1

Γ 
s
L ∆ iff for each evaluation s.t. e[Γ] ⊆ {1} we have sup

δ∈∆
e(δ) = 1

And we can do it even in BTLSMVA

Γ 
sw
B... ∆ iff for each function n : ∆→ ω we have Γ, {¬(δn(δ)) | δ ∈ ∆} `B... ⊥
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