

Duality in Algebra and Logic Chapman University

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

Presented

formation

On the structure

Normal Form

Conclusions

The Geometry of Free Algebras in Chang Variety: a Bridge from Semisimplicity to Infinitesimals

Antonio Di Nola

Department of Mathematics University of Salerno

Talk based on a joint work with G. Lenzi and G. Vitale

A. Di Nola

Infinitesimals

V(C)-algebras

TIFX

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Treatment of Infinitesimals: an exotic or negligible topic in MV-algebras theory!

SAC

A. Di Nola

Infinitesimals

V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Treatment of Infinitesimals: an exotic or negligible topic in MV-algebras theory!

Is it true?

14 M

A. Di Nola

Infinitesimals

V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

Treatment of Infinitesimals: an exotic or negligible topic in MV-algebras theory!

Is it true?

For sure: It is problematic

Sar

A. Di Nola

Infinitesimals

V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

Treatment of Infinitesimals: an exotic or negligible topic in MV-algebras theory!

Is it true?

For sure: It is problematic

But: fascinating and very promising.

Sar

Infinitesimals

V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

A dualism

(1) Archimedean Algebras: A tractable class

-vs-

(2) Non Archimedean Algebras: A wild class

Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

A dualism

(1) Archimedean Algebras: A tractable class

-vs-

(2) Non Archimedean Algebras: A wild class

How to tame (2)?

- N

Infinitesimals

In MV-algebraic setting:

Archimedean = **Semisimple**

< 口 > < 円

SAC

Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) Boolean Algebras are all semisimple

SAC

A. Di Nola Infinitesimals

- (•) Boolean Algebras are all semisimple
- (•) [0,1] is archimedean (more, it is simple)

A. Di Nola

- Infinitesimals
- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Transformation
- On the structure
- Normal Form
- Conclusions

- (•) Boolean Algebras are all semisimple
- (•) [0,1] is archimedean (more, it is simple)
- (•) Archimedean algebras have a good state theory

A. Di Nola

- (•) Boolean Algebras are all semisimple
- (•) [0,1] is archimedean (more, it is simple)
- (\bullet) Archimedean algebras have a good state theory
- (•) Complete and σ -complete MV-algebras are archimedean

A. Di Nola Infinitesimals

- (•) Boolean Algebras are all semisimple
 - (•) [0,1] is archimedean (more, it is simple)
 - (\bullet) Archimedean algebras have a good state theory
 - (•) Complete and $\sigma\text{-complete}$ MV-algebras are archimedean
 - (•) Semisimple MV-algebras are dual with closed sets of a Tychonoff space (Marra-Spada duality)

A. Di Nola

- Infinitesimals
- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Transformation
- On the structure
- Normal Form
- Conclusions

- (•) Boolean Algebras are all semisimple
- (•) [0,1] is archimedean (more, it is simple)
- (•) Archimedean algebras have a good state theory
- (•) Complete and $\sigma\text{-complete}$ MV-algebras are archimedean
- (•) Semisimple MV-algebras are dual with closed sets of a Tychonoff space (Marra-Spada duality)
- (•) Finitely presented MV-algebras are archimedean and dual with rational polyhedra of $[0,1]^n$

A. Di Nola

- Infinitesimals
- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- (•) Boolean Algebras are all semisimple
- (•) [0,1] is archimedean (more, it is simple)
- (•) Archimedean algebras have a good state theory
- (•) Complete and $\sigma\text{-complete}$ MV-algebras are archimedean
- (•) Semisimple MV-algebras are dual with closed sets of a Tychonoff space (Marra-Spada duality)
- (•) Finitely presented MV-algebras are archimedean and dual with rational polyhedra of $[0,1]^n$
- (•) Free MV-algebras are archimedean

A. Di Nola

- Infinitesimals
- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Transformation
- On the structure
- Normal Form
- Conclusions

- (•) Boolean Algebras are all semisimple
- (•) [0,1] is archimedean (more, it is simple)
- (•) Archimedean algebras have a good state theory
- (•) Complete and $\sigma\text{-complete}$ MV-algebras are archimedean
- (•) Semisimple MV-algebras are dual with closed sets of a Tychonoff space (Marra-Spada duality)
- (•) Finitely presented MV-algebras are archimedean and dual with rational polyhedra of $[0,1]^n$
- (•) Free MV-algebras are archimedean
- (•) Propositional Łukasiewicz Logic is complete with respect to [0, 1] (Standard competeness)

Image: Image:

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

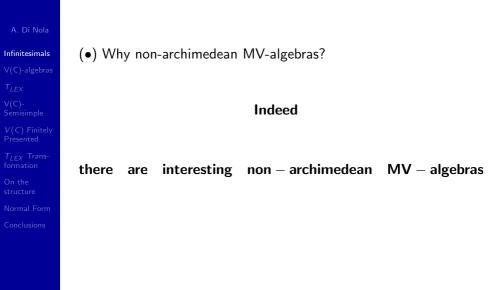
Normal Form

Conclusions

(•) Why non-archimedean MV-algebras?

< 口 > < 円

14 I.S.



< 口 > < 円

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple V(C) Finitely Presented T_{LEX} Transformation the

On the structure

Normal Form

Conclusions

(•) Why non-archimedean MV-algebras?

Indeed

there are interesting non-archimedean MV-algebras

• We will try to justify some deep interest in non-archimedean MV-algebras.

< 口 > < 円

Infinitesimals

V(C)-algebras

 T_{LEX}

Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

The smallest non-archimedean MV-algebra:

Chang's Algebra C

• *C* is a kind of **virus** algebra: a lot of **peculiar phenomena** arise from the existence of non-archimedean MV-algebras

• C is essentially made by infinitesimals

0 • · · · · · · • 1

< □ > < □ > < □ > < □ > < □ > < □ >

A. Di Nola Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

The class of MV-algebras which generalizes the algebra ${\it C}$ is given by

Perfect MV - algebras,

those MV-algebras which are generated by their **radical** (i.e. algebras generated by their infinitesimal elements)

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

The class of MV-algebras which generalizes the algebra ${\it C}$ is given by

Perfect MV - algebras,

those MV-algebras which are generated by their **radical** (i.e. algebras generated by their infinitesimal elements)

• The category of Perfect MV-algebras and the category of Abelian $\ell\text{-}\mathsf{groups}$ are equivalent by a functor Δ :

from Abelian ℓ -groups $\xrightarrow{\Delta}$ to Perfect MV-algebras.

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

The class of MV-algebras which generalizes the algebra C is given by

Perfect MV - algebras,

those MV-algebras which are generated by their **radical** (i.e. algebras generated by their infinitesimal elements)

• The category of Perfect MV-algebras and the category of Abelian $\ell\text{-}\mathsf{groups}$ are equivalent by a functor Δ :

from Abelian $\ell\text{-groups}\overset{\Delta}{\to}$ to Perfect MV-algebras.

• This equivalence allows a remarkable exchange of results between Perfect MV-algebras and the time-honored theory of lattice ordered abelian groups

(日)

V(C)-algebras

infinitesimals in MV-algebras theory: Some facts about

< □ > < /□ >

.∃ . ►

SAC

V(C)-algebras

- T_{LEX} V(C)-
- V(C) Finitely Presented
- T_{LEX} Transformation
- On the structure
- Normal Form
- Conclusions

Some facts about infinitesimals in MV-algebras theory:

(•) Every MV-algebra can be represented by an MV-algebra of functions valued in *[0,1]

< 口 > < 円

Infinitesimals

V(C)-algebras

T_{LEX} V(C)-

Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Some facts about infinitesimals in MV-algebras theory:

- (•) Every MV-algebra can be represented by an MV-algebra of functions valued in *[0,1]
- (•) The first order Łukasiewicz Logic is non standard-complete: there are formulas which are **true** and **not provable**

Infinitesimals

V(C)-algebras

- T_{LEX} V(C)-
- Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

Some facts about infinitesimals in MV-algebras theory:

- (•) Every MV-algebra can be represented by an MV-algebra of functions valued in *[0,1]
- (•) The first order Łukasiewicz Logic is non standard-complete: there are formulas which are **true** and **not provable**
- (•) Such formulas are **co-infinitesimals** in the Lindenbaum algebra, *FOL*, of First Order Łukasiewicz Logic
- orm (
 - (•) It is worth to study the structure and the properties of the **Perfect skeleton** of *FOL*, still unknown.

A. Di Nola
V(C)-algebras

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• An intuitive interpretation of infinitesimals and co-infinitesimals in MV-algebras:

(•) Infintesimals as almost false

(•) Co – infintesimals as almost true

Infinitesimals V(C)-algebras

T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

The logic of infinitesimal as approximation of truth

ullet take a formula α evaluated in [0,1] $v(\alpha)=1/3$ or $v(\alpha)=1/2$

then α can be reasonably considered a formula which is quasi true (or also quasi false)

• but if $v(\alpha)$ is evaluated in an infinitesimal, then α has to be considered quasi false and not quasi true

• because, in this case, the behaviour of α is very much similar to the absolute falsity: $v(\alpha) = 0$

Indeed:

Infinitesimals

V(C)-algebras

T_{LEX} V(C)-Semisimp

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

- when α is evaluated in [0,1] and $v(\alpha) \neq 0$, then there is $n \mid nv(\alpha) = 1$
- this cannot be when $v(\alpha)$ is infinitesimal.
- Evaluating a formula α on a perfect algebra A, we can interpret $v(\alpha)$:
- (1) as measuring **how much** α is close to be true, if $v(\alpha) \in Co Rad(A)$
- (2) as measuring **how much** α is close to be false, if $v(\alpha) \in Rad(A)$

Image: A matrix

A. DI Noia Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

 \bullet This can be seen as a **quantitative information** about the truth value of α

We would like to justify the term **quantitative** thinking of abelian ℓ -groups (in duality with Perfect MV-algebras) as algebras of magnitudes (Mundici: lattice ordered abelian groups (l-groups) describe magnitude-valued functions defined on compact spaces)

• Reamarkable fact is that: There is a specific logic for the concept of quasi true, which is a conservative extension of Łukasiewicz logic.

A. Di Nola Infinitesimals V(C)-algebras T_{LEX}

Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

The extension L_P of LL is given by adding the further axiom:

 $(x \oplus x) \odot (x \oplus x) \leftrightarrow (x \odot x) \oplus (x \odot x)$

Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

It happens that L_P is complete with respect to Chang'algebra C.

The equational class of MV-algebras obtained by adding the condition:

$$(2x)^2 = 2(x^2)$$

will be denoted by V(C) (the variety generated by C).

V(C)-algebras

Duality in Algebra and Logic

Why the variety V(C) is interesting? :

- (-) For any MV-algebra, all the above defined skeletons, invariant, are members of V(C);
- (-) Every MV-algebra A has the greatest subalgebra belonging to V(C) (the V(C) skeleton of A: Sk V(C)(A), still an invariant of A;
- (-) The maps sending A to its above skeletons, respectively, are functors;
- (-) The logic L_P associated to V(C) has nice properties that we will see later on;
- (-) Every V(C) algebra is generated by the union of its **Boolean** skeleton and its **Perfect** skeleton.

< 口 > < 円

A. Di Nola Infinitesimals V(C)-algebras T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

- (-) Max(A) is homeomorphic to Max(B(A)), hence a Stone space
- (-) B(A) is a retract with respect to the Rad(A)

- A. DI Noia Infinitesimals V(C)-algebras
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- The categories of Boolean Algebras and Perfect MV – algebras contain very different objects,
- in some extent the categories are *opposites* categories
- Boolean algebras are semisimple (i.e. have *Radical* = {0})
- Perfect MV-algebras are just generated by their Radical

A. Di Nola				
V(C)-algebras				
	The opposite poles of V(C)			
	The opposite poles of $\mathbf{v}(\mathbf{C})$			
	What in between?			
T _{LEX} Trans- formation				
On the structure	Boolean Algebras \Rightarrow ??? \leftarrow Perfect MV – algebras			
	0			

SAC

Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

The axiom $2x^2 = (2x)^2$ reconciles the extreme poles.

A. Di Nola Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

L_P is:

- (-) L_P is complete with respect to all **PerfectMV-chains**
- (-) L_P is complete with respect to $\Gamma(Zx_{lex}R, (1, 0))$
- (-) L_P is structurally complete
- (-) the tautology problem is coNP-complete

Infinitesimals

V(C)-algebras

T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• To speak of V(C) algebras, as a slogan, we can say that:

V(C) algebras are made by **clouds** of **infinitesimals** around **idempotents**

- \bullet better: V(C) algebras \mathbf{fuse} together boolean elements with infinitesimals
- \bullet that is: **qualitative** information **fused** with **quantitative** information

< 口 > < 円

A. Di Nola Infinitesimals V(C)-algebras **T_{LEX}** V(C)-Semisimple V(C) Finitely Presented T_{LEX} Transformation On the

structure

Normal Form

Conclusions

T_{LEX} Transformation A machinery to deal with infinitesimals

$T_{\text{LEX}} - transform \quad \text{and} \quad Free \quad Algebras$

A. DI Nola Infinitesimals

T_{LEX} V(C)-

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

 (\bullet) A **functorial** way to move from:

Finitely Generated Free MV-algebras \rightarrow to Finitely Generated Free V(C)-algebras

(•) We try to build a geometry of free V(C)-algebras by paralleling the way used for Free MV-algebras

(•) this means to pass from a geometry based on an Archimedean algebra to a non archimedean one.

A. Di Nola Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) Note that: [0,1] generates the variety ${\it MV}$

and

(•) $T_{LEX}([0,1]) = \Gamma(ZX_{lex}R,(1,0))$ generates the variety V(C).

- A. Di Nola Infinitesimals V(C)-algebras
- *T_{LEX}* ∨(C)-
- V(C) Finitely Presented
- T_{LEX} Transformation
- On the structure
- Normal Form
- Conclusions

(•) McNaughton Theorem (for *MV*-algebras)

Free MV-algebras are MV-algebras of functions from $[0, 1]^n$ to [0, 1] which are continuous, piecewise linear with integer coefficients.

• we can parallel the above theorem.

Infinitesimals

T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(1) Given a formula α , by McNaughton theorem we get a McNaughton function f_{α}

< 口 > < 円

Infinitesimals

- T_{IFX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- (1) Given a formula α , by McNaughton theorem we get a McNaughton function f_{α}
- (2) Then we have the constituents {f¹_α, ..., f^k_α}, of f_α, a family of linear functions and a simplicial complex of [0, 1]ⁿ, {σ₁, ..., σ_k}

- Infinitesimals
- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- (1) Given a formula α , by McNaughton theorem we get a McNaughton function f_{α}
- (2) Then we have the constituents {f¹_α, ..., f^k_α}, of f_α, a family of linear functions and a simplicial complex of [0, 1]ⁿ, {σ₁, ..., σ_k}
- (3) By DNL-Lettieri Normal Form, we get φ₁, ..., φ_k
 MV-polynomials with corresponding McNaughton functions f_{φ1}, ..., f_{φk} whose restrictions to {σ₁, ..., σ_k}, respectively, coincide with {f¹_α, ..., f^k_α}

< □ > < □ > < □ > < □ >

 T_{LEX}

• For a vertex v of $[0, 1]^n$

Image: A matrix

→ ∃ →

SAC

Infinitesimals

T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

• For a vertex v of $[0,1]^n$

• We can consider all the simplexes having v as a vertex (v-simplicial complex)

Infinitesimals

T_{LEX} V(C)-

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• For a vertex v of $[0,1]^n$

• We can consider all the simplexes having v as a vertex (v-simplicial complex)

• (Def.) An abstract simplicial complex F_v is called abstract simplicial **fan** iff F_v is a *v*-simplicial complex.

• Note that *v*-simplicial complex and abstact fans are combinatorially equivalent

A. Di Noia Infinitesimals

V(C)-algebras

T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• We have seen that for each McNaughton function f_{α} we can construct a simplicial complex $\Lambda_{f_{\alpha}}$

Sar

A. Di Nola Infinitesimals V(C)-algebras

T_{LEX} V(C)-Semisimple

V(C) Finitel Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• We have seen that for each McNaughton function f_{α} we can construct a simplicial complex $\Lambda_{f_{\alpha}}$

 \bullet Then there is a canonical way to associate to each v-complex an abstract simplicial fan

A. DI Nola Infinitesimals V(C)-algebras

T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• We have seen that for each McNaughton function f_{α} we can construct a simplicial complex $\Lambda_{f_{\alpha}}$

• Then there is a canonical way to associate to each *v*-complex an abstract simplicial fan

• We can evaluate the **polynomials** $\phi_1, ..., \phi_k$ by functions in $\Delta(R)^{\Delta(R)^n}$ and to get a map:

$$T_{Lex}:$$
 Free $_{MV}(n) \longrightarrow \Delta(R)^{\Delta(R)^n}$

Infinitesimals

 T_{LEX}

V(C)-Semisimple

V(C) Finite Presented

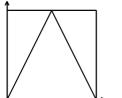
T_{LEX} Tran formation

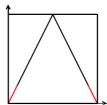
On the structure

Normal Form

Conclusions

Example





. ⊒ →

SAC

A. DI Nola Infinitesimals

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

Theorem:

 $T_{Lex}(Free_{MV}(n))$ is the free *n*-generated algebra in V(C)

< 口 > < 円

A. Dı Nola Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Theorem:

 $T_{Lex}(Free_{MV}(n))$ is the free *n*-generated algebra in V(C)

• T_{Lex} of ideals are ideals, i.e. $T_{Lex}(I) := \{ T_{Lex}(f) \mid f \in I \}$

A. Di Nola Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Theorem:

 $T_{Lex}(Free_{MV}(n))$ is the free *n*-generated algebra in V(C)

• T_{Lex} of ideals are ideals, i.e. $T_{Lex}(I) := \{ T_{Lex}(f) \mid f \in I \}$

• T_{Lex} is a functor from the category of free finitely generated MV-algebras to the category of free finitely generated V(C)-algebras.

A. Di Nola Infinitesimals V(C)-algebras

V(C)-Semisimple

TIFX

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

As consequences of the above theorem, and by applications of T_{Lex} transform, we have:

McNaughton-type Theorem for Free-V(C)-algebras

Sar

Infinitesimals

T_{LEX} V(C)-

V(C) Finitel Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) Free V(C)-algebras are algebras of functions f from $(T_{LEX}([0,1]))^n$ to $T_{LEX}([0,1])$ such that:

 f is continuous and there are a finite number of distinct linear functions with integer coefficients λ₁, ..., λ_n such that for each (x₁, ..., x_n) ∈ (T_{LEX}([0, 1]))ⁿ there exists j ∈ {1, ..., n} such that:

Image: Image:

$$f(x_1,...,x_n) = \lambda_j(x_1,...,x_n).$$

V(C)-Semisimple

V(C) – Semisimple Algebras

Image: A matching of the second se

SAC

A. Di Nola Infinitesimals

V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) a V(C)-algebra A, is called V(C)-simple iff A is subalgebra of $\Delta(\mathbb{R})$.

< 口 > < 円

SAC

A. Di Nola Infinitesimals

- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- (•) a V(C)-algebra A, is called V(C)-simple iff A is subalgebra of $\Delta(\mathbb{R})$.
- (•) The category $V(C)_{ss}$ of V(C)-semisimple algebras:

A. DI Noia Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) a V(C)-algebra A, is called V(C)-simple iff A is subalgebra of $\Delta(\mathbb{R})$.

(•) The category $V(C)_{ss}$ of V(C)-semisimple algebras:

(-) Objects of $V(C)_{ss}$ are V(C)-algebras isomorphic with a subdirect product of copies of $\Delta(\mathbb{Z})$, (-) Morphisms of $V(C)_{ss}$ are definable maps.

- A. DI Noia Infinitesimals V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- (•) a V(C)-algebra A, is called V(C)-simple iff A is subalgebra of $\Delta(\mathbb{R})$.
- (•) The category $V(C)_{ss}$ of V(C)-semisimple algebras:
- (-) Objects of $V(C)_{ss}$ are V(C)-algebras isomorphic with a subdirect product of copies of $\Delta(\mathbb{Z})$, (-) Morphisms of $V(C)_{ss}$ are definable maps.
- (•) Note that Free V(C)-algebras are V(C)-semisimple

< ロ > < 同 > < 回 > < 回 >

A. Di Nola Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

(•) Let **MS** be the Marra-Spada functor between **semisimple MV-algebras** and closed sets in $[0, 1]^{\alpha}$ with α cardinal equiped with definable maps as mophisms.

A. Di Nola Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) Let **MS** be the Marra-Spada functor between **semisimple MV-algebras** and closed sets in $[0, 1]^{\alpha}$ with α cardinal equiped with definable maps as mophisms.

(•) In a natural way we can replicate the above result in Chang variety, considering the category $V(C)_{ss}$.

A. Di Nola Infinitesimals V(C)-algebras T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) Let **MS** be the Marra-Spada functor between **semisimple MV-algebras** and closed sets in $[0, 1]^{\alpha}$ with α cardinal equiped with definable maps as mophisms.

(•) In a natural way we can replicate the above result in Chang variety, considering the category $V(C)_{ss}$.

(•) Indeed, $T_{\mathsf{LEX}}|_{\mathsf{MV}_{ss}}$ is a functor from MV_{ss} to $\mathsf{V}(\mathsf{C})_{ss}.$

A. Di Nola Infinitesimals V(C)-algebras

 T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

(•) \mathbb{Z} -closed sets in $\Delta(\mathbb{Z})^{\alpha}$

Def: A subset S of $\Delta(\mathbb{Z})^{\alpha}$ iff Z(I(S)) is a closed set in the Zarisky topology. We have that:

Α.	Di	Nola	

V(C)-Semisimple

Semisimple MV-algebras

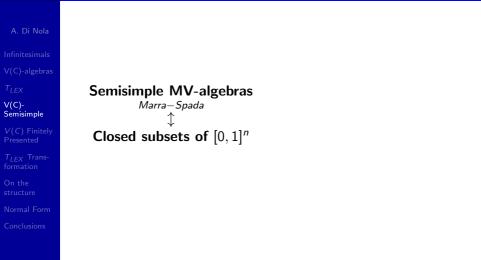
A. Di Nola (UniSA)

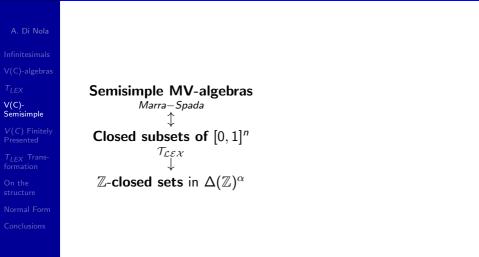
э Conference 38 / 54

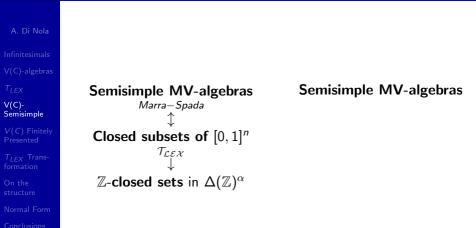
< 口 > < 円

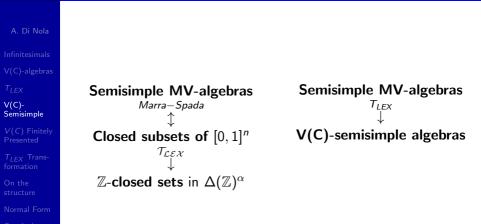
∃ ►

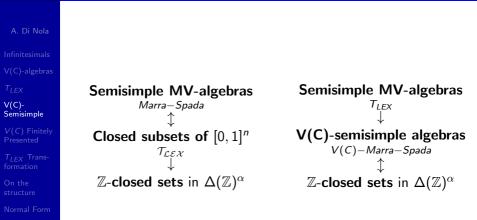
SAC











A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Finitely presented MV-algebras in V(C)

< □ > < /□ >

SAC

Infinitesimals V(C)-algebras

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

(•) **Def**: A fan P is a rational fan iff every cone belonging to P is defined by linear inequalities with rational coefficients.

Theorem

For any $A \in V(C)$ the following conditions are equivalent:

- A is finitely presented;
- **2** for some rational fan P in $\Delta(\mathbb{R})^n A \cong \mathbf{T}_{\mathsf{LEX}}(M_n)|_P$;
- **3** $A \cong LIND^1_{\theta}$ for some θ satisfable formula.

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

• Note that:

passing from the variety MV to V(C), in the case of finitely presented algebras, the role of **Rational polyhedra**, is converted into the role of **Rational fans**, via T_{LEX} transform.

T_{LEX} Transformation

T_{LEX}**Transformation**

MV-algebras	$\xrightarrow{T_{Lex}}$	V(C)-algebras
Free	$\xrightarrow{T_{Lex}}$	Free
Semisimple	$\xrightarrow{T_{Lex}}$	V(C)-semisimple
Closed subsets of $[0,1]^{lpha}$	$\xrightarrow{T_{Lex}}$	$\mathbb Z ext{-closed sets}$ in $\Delta(\mathbb Z)^lpha$
Finitely Presented	$\xrightarrow{T_{Lex}}$	Finitely Presented
Rational Polyedra in [0, 1] ⁿ	$\xrightarrow{T_{Lex}}$	Rational Fans in $\Delta(\mathbb{Z})^n$

Image: A matrix

.∃ . ►

SAC

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple V(C) Finitely Presented T_{LEX} Transformation

On the structure

Normal Form

Conclusions

On the structure of V(C) algebras

< 口 > < 円

∃ ►

SAC

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Every MV-algebra A in the variety V(C) is generated by:

• its Boolean skeleton B(A)

and its

• Perfect skeleton *Perf*(*A*).

Sac

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

T_{LEX} Trans

On the structure

Normal Form

Conclusions

Usually it is **not enough** to fix a Boolean algebra B and a perfect MV-algebra *Perf* to univocally determine an MV-algebra A such that $B(A) \cong B$ and $Perf(A) \cong P$.

(•) Additional information is needed

Normal Form

Normal Form in V(C)-algebras

Image: A matrix

→ Ξ → .

SAC

A. DI Noia Infinitesimals V(C)-algebras T_{LEX}

V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

For every MV algebra A ∈ V(C) there are a unique b ∈ B(A) and a unique e ∈ Rad(A) such that

$$x = (b \wedge \epsilon^*) \vee \epsilon$$

Finally, we let

.

$$N(x) = (b_x, \epsilon_x)$$

and we call N(x) the normal form of x.

A. Dr Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-Semisimple

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

In order to describe the effect of MV-algebraic operations on the boolean and infinitesimal components we consider the polynomial: $b_1, b_2 \in B(A)$ and $h_1, h_2 \in Perf(A)$

$$T(b_1, b_2, h_1, h_2) =$$

 $(b_1 \wedge b_2^*) \wedge (h_1 \ominus h_2) \oplus (b_1^* \wedge b_2) \wedge (h_2 \ominus h_1) \oplus (b_1^* \wedge b_2^*) \wedge (h_1 \oplus h_2).$

(•) The polynomial T results to be an invariant for V(C)-algebras.

A. Di Nola Infinitesimals V(C)-algebras T_{LEX} V(C)-

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

A representation theorem Let *A* be a V(C) algebra and $D_A = B(A) \times Rad(A)$. Then on D_A we define the following operations:

$$(b, \varepsilon) \mp (b', \varepsilon') = (b \lor b', T_A(b, b', \varepsilon, \varepsilon'))$$

$$\neg(b,\varepsilon) = (b^*,\varepsilon).$$

Theorem

 $D_A = (D_A, \mp, (0, 0), \neg)$ is an MV-algebra and D_A is isomorphic to A.

< □ > < /□ >

→ Ξ →

A. Di Nola Infinitesimals V(C)-algebras

V(C)-

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

By the above theorem

• we can see that starting with a V(C) algebra A,

• we can get a triple of pieces of information that, up to isomorphism, completely codifies the MV-algebraic structure of *A*.

• So the triple is a complete invariant for V(C) algebras, given by B(A), Rad(A), T_A .

A. Di Nola Infinitesimals V(C)-algebras

V(C)-Semisimp

V(C) Finitely Presented

T_{LEX} Trans formation

On the structure

Normal Form

Conclusions

Conclusions. We have seen that:

(-) In the wild class of non-archimedean MV-algebras, V(C)-algebras have a quite tractable behaviour.

- A. Di Nola Infinitesimals V(C)-algebras T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- Conclusions. We have seen that:
- (-) In the wild class of non-archimedean MV-algebras, V(C)-algebras have a quite tractable behaviour.
- (-) It seems clear that their behaviour parallels that of archimedean ones, at least in the relationships existing among logic, free algebras and their geometry.

- A. Di Nola Infinitesimals V(C)-algebras T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- Conclusions. We have seen that:
- (-) In the wild class of non-archimedean MV-algebras, V(C)-algebras have a quite tractable behaviour.
- (-) It seems clear that their behaviour parallels that of archimedean ones, at least in the relationships existing among logic, free algebras and their geometry.

- A. Di Nola Infinitesimals V(C)-algebras ⊤
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Transformation
- On the structure
- Normal Form
- Conclusions

(-) **T**_{LEX} functor provides useful and powerful mechanism to generate, manipulate and manage the infinitesimals, i.e. the algebraic and analytical representatives of perturbations of *clear* truth values.

- A. Di Nola Infinitesimals V(C)-algebras ⊤
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- (-) **T**_{LEX} functor provides useful and powerful mechanism to generate, manipulate and manage the infinitesimals, i.e. the algebraic and analytical representatives of perturbations of *clear* truth values.
- (-) The presented results open the door to an analogous treatment for all varieties of MV-algebras generated by a single non-archimedean chain, showing how, in some regards, to pass from results on archimedean MV-algebras to non-archimedean ones.

Infinitesimals

V(C)-algebras

 T_{LEX}

V(C)-Semisimpl

V(C) Finitely Presented

T_{LEX} Transformation

On the structure

Normal Form

Conclusions

Some perspectives:

- Having a convincing representation of free V(C)-algebras, via McNaughton-like functions
- Recalling the interpretation of elements of free MV-algebras as generalized events, as suggested by D. Mundici
- then we can look at any element of free V(C)-algebras as special case of generalized event, and of course, an element of free Boolean algebras as classical event

nfinitesimals

- V(C)-algebras
- T_{LEX}
- V(C)-Semisimpl
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form
- Conclusions

- Hence we can think of V(C)-events as obtained by a fusion of classical events with almost true events or almost false event
- 2 An analysis of the structure of V(C)-algebras can show how such a fusion can be performed

- Infinitesimals
- V(C)-algebras
- T_{LEX}
- V(C)-Semisimple
- V(C) Finitely Presented
- T_{LEX} Trans formation
- On the structure
- Normal Form

Conclusions

- Hence we can think of V(C)-events as obtained by a fusion of classical events with almost true events or almost false event
- ⁽²⁾ An analysis of the structure of V(C)-algebras can show how such a fusion can be performed
- This open the door to questions, for example, about setting, in the framework of V(C)-algebras, of notions as, V(C) σ-complete algebra, V(C)-random variable, V(C)-tribe, and so on, via T_{Lex} transformation of the classical, or MV-algebraic corresponding notions.