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But: fascinating and very promising.
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A dualism

(1) Archimedean Algebras: A tractable class

−vs−

(2) Non Archimedean Algebras: A wild class

How to tame (2)?
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In MV-algebraic setting:

Archimedean = Semisimple
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(•) Boolean Algebras are all semisimple

(•) [0, 1] is archimedean (more, it is simple)

(•) Archimedean algebras have a good state theory

(•) Complete and σ-complete MV-algebras are archimedean

(•) Semisimple MV-algebras are dual with closed sets of a
Tychonoff space (Marra-Spada duality)

(•) Finitely presented MV-algebras are archimedean and dual
with rational polyhedra of [0, 1]n

(•) Free MV-algebras are archimedean

(•) Propositional  Lukasiewicz Logic is complete with respect to
[0, 1] (Standard competeness)
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(•) Why non-archimedean MV-algebras?

Indeed

there are interesting non− archimedean MV − algebras

• We will try to justify some deep interest in non-archimedean
MV-algebras.

A. Di Nola (UniSA) Conference 6 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

(•) Why non-archimedean MV-algebras?

Indeed

there are interesting non− archimedean MV − algebras

• We will try to justify some deep interest in non-archimedean
MV-algebras.

A. Di Nola (UniSA) Conference 6 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

(•) Why non-archimedean MV-algebras?

Indeed

there are interesting non− archimedean MV − algebras

• We will try to justify some deep interest in non-archimedean
MV-algebras.

A. Di Nola (UniSA) Conference 6 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

The smallest non-archimedean MV-algebra:

Chang ′s Algebra C

• C is a kind of virus algebra: a lot of peculiar phenomena
arise from the existence of non-archimedean MV-algebras

• C is essentially made by infinitesimals

0 • · · · · · · · · · · · · • 1
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The class of MV-algebras which generalizes the algebra C is
given by

Perfect MV − algebras,

those MV-algebras which are generated by their radical (i.e.
algebras generated by their infinitesimal elements)

• The category of Perfect MV-algebras and the category of
Abelian `-groups are equivalent by a functor ∆:

from Abelian `-groups
∆→ to Perfect MV-algebras.

• This equivalence allows a remarkable exchange of results
between Perfect MV-algebras and the time-honored theory of
lattice ordered abelian groups

A. Di Nola (UniSA) Conference 8 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

The class of MV-algebras which generalizes the algebra C is
given by

Perfect MV − algebras,

those MV-algebras which are generated by their radical (i.e.
algebras generated by their infinitesimal elements)

• The category of Perfect MV-algebras and the category of
Abelian `-groups are equivalent by a functor ∆:

from Abelian `-groups
∆→ to Perfect MV-algebras.

• This equivalence allows a remarkable exchange of results
between Perfect MV-algebras and the time-honored theory of
lattice ordered abelian groups

A. Di Nola (UniSA) Conference 8 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

The class of MV-algebras which generalizes the algebra C is
given by

Perfect MV − algebras,

those MV-algebras which are generated by their radical (i.e.
algebras generated by their infinitesimal elements)

• The category of Perfect MV-algebras and the category of
Abelian `-groups are equivalent by a functor ∆:

from Abelian `-groups
∆→ to Perfect MV-algebras.

• This equivalence allows a remarkable exchange of results
between Perfect MV-algebras and the time-honored theory of
lattice ordered abelian groups

A. Di Nola (UniSA) Conference 8 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

Some facts about infinitesimals in MV-algebras theory:

(•) Every MV-algebra can be represented by an MV-algebra of
functions valued in ∗[0, 1]

(•) The first order  Lukasiewicz Logic is non standard-complete:
there are formulas which are true and not provable

(•) Such formulas are co-infinitesimals in the Lindenbaum
algebra, FOL, of First Order  Lukasiewicz Logic

(•) It is worth to study the structure and the properties of the
Perfect skeleton of FOL, still unknown.
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• An intuitive interpretation of infinitesimals and
co-infinitesimals in MV-algebras:

(•) Infintesimals as almost false

(•) Co− infintesimals as almost true

A. Di Nola (UniSA) Conference 10 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

The logic of infinitesimal as approximation of truth

• take a formula α evaluated in [0, 1] v(α) = 1/3 or v(α) = 1/2

then α can be reasonably considered a formula which is quasi
true (or also quasi false)

• but if v(α) is evaluated in an infinitesimal, then α has to be
considered quasi false and not quasi true

• because, in this case, the behaviour of α is very much similar
to the absolute falsity: v(α) = 0

A. Di Nola (UniSA) Conference 11 / 54
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Indeed:

• when α is evaluated in [0, 1] and v(α) 6= 0, then there is
n | nv(α) = 1

• this cannot be when v(α) is infinitesimal.

• Evaluating a formula α on a perfect algebra A, we can
interpret v(α):

(1) as measuring how much α is close to be true, if
v(α) ∈ Co − Rad(A)

(2) as measuring how much α is close to be false, if
v(α) ∈ Rad(A)
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A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

• This can be seen as a quantitative information about the
truth value of α

We would like to justify the term quantitative thinking of
abelian `-groups (in duality with Perfect MV-algebras) as
algebras of magnitudes (Mundici: lattice ordered abelian groups
(l-groups) describe magnitude-valued functions defined on
compact spaces )

• Reamarkable fact is that:There is a specific logic for the
concept of quasi true, which is a conservative extension of
 Lukasiewicz logic.
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The extension LP of  LL is given by adding the further axiom:

(x ⊕ x)� (x ⊕ x)↔ (x � x)⊕ (x � x)
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It happens that LP is complete with respect to Chang’algebra C .

The equational class of MV-algebras obtained by adding the
condition:

(2x)2 = 2(x2)

will be denoted by V (C ) (the variety generated by C ).
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Why the variety V (C ) is interesting? :

(-) For any MV-algebra, all the above defined skeletons,
invariant, are members of V (C );

(-) Every MV-algebra A has the greatest subalgebra belonging
to V (C ) (the V (C ) skeleton of A: Sk − V (C )(A), still an
invariant of A;

(-) The maps sending A to its above skeletons, respectively, are
functors;

(-) The logic LP associated to V (C ) has nice properties that
we will see later on;

(-) Every V (C )− algebra is generated by the union of its
Boolean skeleton and its Perfect skeleton.
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(-) Max(A) is homeomorphic to Max(B(A)), hence a Stone
space

(-) B(A) is a retract with respect to the Rad(A)
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• The categories of Boolean Algebras and
Perfect MV − algebras contain very different objects,

• in some extent the categories are opposites categories

• Boolean algebras are semisimple (i.e. have Radical = {0})
• Perfect MV-algebras are just generated by their Radical
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The opposite poles of V(C)

What in between?

Boolean Algebras ⇒ ??? ⇐ Perfect MV − algebras
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The axiom 2x2 = (2x)2 reconciles the extreme poles.
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LP is:

(-) LP is complete with respect to all PerfectMV-chains

(-) LP is complete with respect to Γ(ZxlexR, (1, 0))

(-) LP is structurally complete

(-) the tautology problem is coNP-complete

A. Di Nola (UniSA) Conference 21 / 54
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• To speak of V (C ) algebras, as a slogan, we can say that:

V (C ) algebras are made by clouds of infinitesimals around
idempotents

• better: V (C ) algebras fuse together boolean elements with
infinitesimals

• that is: qualitative information fused with quantitative
information
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TLEX Transformation
A machinery to deal with infinitesimals

TLEX − transform and Free Algebras
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(•) A functorial way to move from:

Finitely Generated Free MV-algebras → to Finitely Generated
Free V (C )-algebras

(•) We try to build a geometry of free V (C )-algebras by
paralleling the way used for Free MV-algebras

(•) this means to pass from a geometry based on an
Archimedean algebra to a non archimedean one.
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(•) Note that: [0, 1] generates the variety MV

and

(•) TLEX ([0, 1]) = Γ(ZXlexR, (1, 0)) generates the variety V (C ).

A. Di Nola (UniSA) Conference 25 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

(•) McNaughton Theorem (for MV -algebras)

Free MV-algebras are MV-algebras of functions from [0, 1]n to
[0, 1] which are continuous, piecewise linear with integer
coefficients.

• we can parallel the above theorem.
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(1) Given a formula α, by McNaughton theorem we get a
McNaughton function fα

(2) Then we have the constituents {f 1
α , ..., f

k
α }, of fα, a family

of linear functions and a simplicial complex of [0, 1]n,
{σ1, ..., σk}

(3) By DNL-Lettieri Normal Form, we get φ1, ..., φk
MV-polynomials with corresponding McNaughton
functions fφ1 , ..., fφk

whose restrictions to {σ1, ..., σk},
respectively, coincide with {f 1

α , ..., f
k
α }

A. Di Nola (UniSA) Conference 27 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

(1) Given a formula α, by McNaughton theorem we get a
McNaughton function fα

(2) Then we have the constituents {f 1
α , ..., f

k
α }, of fα, a family

of linear functions and a simplicial complex of [0, 1]n,
{σ1, ..., σk}

(3) By DNL-Lettieri Normal Form, we get φ1, ..., φk
MV-polynomials with corresponding McNaughton
functions fφ1 , ..., fφk

whose restrictions to {σ1, ..., σk},
respectively, coincide with {f 1

α , ..., f
k
α }

A. Di Nola (UniSA) Conference 27 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

(1) Given a formula α, by McNaughton theorem we get a
McNaughton function fα

(2) Then we have the constituents {f 1
α , ..., f

k
α }, of fα, a family

of linear functions and a simplicial complex of [0, 1]n,
{σ1, ..., σk}

(3) By DNL-Lettieri Normal Form, we get φ1, ..., φk
MV-polynomials with corresponding McNaughton
functions fφ1 , ..., fφk

whose restrictions to {σ1, ..., σk},
respectively, coincide with {f 1

α , ..., f
k
α }

A. Di Nola (UniSA) Conference 27 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

• For a vertex v of [0, 1]n

• We can consider all the simplexes having v as a vertex
(v -simplicial complex)

• (Def.) An abstract simplicial complex Fv is called abstract
simplicial fan iff Fv is a v -simplicial complex.

• Note that v -simplicial complex and abstact fans are
combinatorially equivalent
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• We have seen that for each McNaughton function fα we can
construct a simplicial complex Λfα

• Then there is a canonical way to associate to each v -complex
an abstract simplicial fan

• We can evaluate the polynomials φ1, ..., φk by functions in
∆(R)∆(R)n and to get a map:

TLex : FreeMV (n) −→ ∆(R)∆(R)n
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Example
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Theorem:

TLex(FreeMV (n)) is the free n-generated algebra in V (C )

• TLex of ideals are ideals, i.e. TLex(I ) := {TLex(f ) | f ∈ I}

• TLex is a functor from the category of free finitely generated
MV-algebras to the category of free finitely generated
V (C )-algebras.
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As consequences of the above theorem, and by applications of
TLex transform, we have:

McNaughton-type Theorem for Free-V(C)-algebras
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(•) Free V (C )-algebras are algebras of functions f from
(TLEX ([0, 1]))n to TLEX ([0, 1]) such that:

• f is continuous and there are a finite number of distinct
linear functions with integer coefficients λ1, ..., λn such that
for each (x1, ..., xn) ∈ (TLEX ([0, 1]))n there exists
j ∈ {1, ..., n} such that:

f (x1, ..., xn) = λj(x1, ..., xn).
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V (C )− Semisimple Algebras
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(•) a V(C)-algebra A, is called V (C )-simple iff A is subalgebra
of ∆(R).

(•) The category V(C)ss of V (C )-semisimple algebras:

(−) Objects of V(C)ss are V (C )-algebras isomorphic with a
subdirect product of copies of ∆(Z),
(−) Morphisms of V(C)ss are definable maps.

(•) Note that Free V (C )-algebras are V (C )-semisimple
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(•) Let MS be the Marra-Spada functor between
semisimple MV-algebras and closed sets in [0, 1]α with α
cardinal equiped with definable maps as mophisms.

(•) In a natural way we can replicate the above result in Chang
variety, considering the category V(C)ss.

(•) Indeed, TLEX|MVss is a functor from MVss to V(C)ss.
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(•) Z-closed sets in ∆(Z)α

Def: A subset S of ∆(Z)α iff Z (I (S)) is a closed set in the
Zarisky topology.
We have that:
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Semisimple MV-algebras

Marra−Spada
l

Closed subsets of [0, 1]n

TLEX
↓

Z-closed sets in ∆(Z)α

Semisimple MV-algebras
TLEX

↓
V(C)-semisimple algebras

V (C)−Marra−Spada
l

Z-closed sets in ∆(Z)α
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Finitely presented MV-algebras in V (C )
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(•) Def: A fan P is a rational fan iff every cone belonging to P
is defined by linear inequalities with rational coefficients.

Theorem

For any A ∈ V (C ) the following conditions are equivalent:

1 A is finitely presented;

2 for some rational fan P in ∆(R)n A ∼= TLEX(Mn)|P ;

3 A ∼= LIND1
θ for some θ satisfable formula.
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• Note that:

passing from the variety MV to V (C ), in the case of finitely
presented algebras , the role of Rational polyhedra, is
converted into the role of Rational fans, via TLEX transform.
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TLEXTransformation

MV-algebras
TLex→ V (C )-algebras

Free
TLex→ Free

Semisimple
TLex→ V (C )-semisimple

Closed subsets of [0, 1]α
TLex→ Z-closed sets in ∆(Z)α

Finitely Presented
TLex→ Finitely Presented

Rational Polyedra in [0, 1]n
TLex→ Rational Fans in ∆(Z)n
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On the structure of V (C ) algebras
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Every MV-algebra A in the variety V (C ) is generated by:

• its Boolean skeleton B(A)

and its

• Perfect skeleton Perf (A).
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Usually it is not enough to fix a Boolean algebra B and a
perfect MV-algebra Perf to univocally determine an MV-algebra
A such that B(A) ∼= B and Perf (A) ∼= P.

(•) Additional information is needed
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Normal Form in V (C )-algebras
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1 For every MV algebra A ∈ V (C ) there are a unique
b ∈ B(A) and a unique ε ∈ Rad(A) such that

x = (b ∧ ε∗) ∨ ε

.

Finally, we let
N(x) = (bx , εx)

and we call N(x) the normal form of x .
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In order to describe the effect of MV-algebraic operations on the
boolean and infinitesimal components we consider the
polynomial: b1, b2 ∈ B(A) and h1, h2 ∈ Perf (A)

T (b1, b2, h1, h2) =

(b1∧b∗2)∧ (h1	h2)⊕ (b∗1∧b2)∧ (h2	h1)⊕ (b∗1∧b∗2)∧ (h1⊕h2).

(•) The polynomial T results to be an invariant for
V (C )-algebras.
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A representation theorem Let A be a V (C ) algebra and
DA = B(A)× Rad(A). Then on DA we define the following
operations:

(b, ε)∓ (b′, ε
′
) = (b ∨ b′,TA(b, b′, ε, ε

′
))

¬(b, ε) = (b∗, ε).

Theorem

DA = (DA,∓, (0, 0),¬) is an MV-algebra and DA is isomorphic
to A.

A. Di Nola (UniSA) Conference 49 / 54



A. Di Nola

Infinitesimals

V(C)-algebras

TLEX

V(C)-
Semisimple

V (C) Finitely
Presented

TLEX Trans-
formation

On the
structure

Normal Form

Conclusions

Duality in Algebra and Logic

By the above theorem

• we can see that starting with a V (C ) algebra A,

• we can get a triple of pieces of information that, up to
isomorphism, completely codifies the MV-algebraic structure of
A.

• So the triple is a complete invariant for V (C ) algebras, given
by B(A),Rad(A),TA.
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Conclusions. We have seen that:

(-) In the wild class of non-archimedean MV-algebras,
V(C)-algebras have a quite tractable behaviour.

(-) It seems clear that their behaviour parallels that of
archimedean ones, at least in the relationships existing
among logic, free algebras and their geometry.
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(-) It seems clear that their behaviour parallels that of
archimedean ones, at least in the relationships existing
among logic, free algebras and their geometry.
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(-) TLEX functor provides useful and powerful mechanism to
generate, manipulate and manage the infinitesimals, i.e. the
algebraic and analytical representatives of perturbations of
clear truth values.

(-) The presented results open the door to an analogous
treatment for all varieties of MV-algebras generated by a
single non-archimedean chain, showing how, in some
regards, to pass from results on archimedean MV-algebras
to non-archimedean ones.
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Some perspectives:

1 Having a convincing representation of free V (C )-algebras,
via McNaughton-like functions

2 Recalling the interpretation of elements of free MV-algebras
as generalized events, as suggested by D. Mundici

3 then we can look at any element of free V (C )-algebras as
special case of generalized event, and of course, an element
of free Boolean algebras as classical event
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1 Hence we can think of V (C )-events as obtained by a fusion
of classical events with almost true events or almost false
event

2 An analysis of the structure of V (C )-algebras can show how
such a fusion can be performed

3 This open the door to questions, for example, about
setting, in the framework of V (C )-algebras, of notions as,
V (C )− σ-complete algebra, V (C )-random variable,
V (C )-tribe, and so on, via TLex transformation of the
classical, or MV-algebraic corresponding notions.
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