
Representation and Duality for Distributoids
J. Michael Dunn

School of Informatics, Computing, Engineering
and Department of Philosophy
Indiana University Bloomington

SYSMICS Workshop on
Duality in Algebra and Logic

Chapman University
September 14-17 2018

This work was partially supported by an Insight Grant from the Canadian Social
Science and Humanities Research Council Prof. Katalin Bimbó at The University of
Alberta.

Ouroboros

Duality

As might be guessed from the workshop title, my talk will be about
Duality in Algebra and Logic. The algebraic structures I will be talking
about, distributoids and gaggles, are generalizations of the Boolean
algebra of classical logic, and apply to many non-classical logics.
And duality at the “object level” is built into their nature. They are
closely related to Jonsson and Tarski’s Boolean algebras with operators.

Distributoids have operations on a distributive lattices that distribute
over join and meet, but in the process they are allowed to change
each to its dual, joint to meet, and meet to join.

Gaggles tie together operations on the same distributoid into a family of
operations using duality. I will spend most of this talk explaining
distributoids and gaggles, but I will end the talk by talking about
“meta level” duality for distributoids and gaggles, namely a topological
duality.

Boolean Algebra with Operators (BAO)

• (B, ∧, ∨, −, {oi}i∈I)
• (B, ∧, ∨, −) is a Boolean algebra [0 = a ∧ −a]
• Each oi is
• i) an operation on B that is ii) normal and iii) additive, i.e.

 i) For some n, oi: Bn → B
ii) For each m ≤ n, fi(x1, …, 0m, …, xn) = 0
iii) fi(x1, …, (a ∨ b)m, …, xn) = fi(x1, …, am, …, xn) ∨ fi(x1, …, bm, …, xn)
It follows from (iii) that each operation fi is monotonic:
 a ≤ b implies fi(x1, …, am, …, xn) ≤ fi(x1, …, bm, …, xn)

We begin by talking about “Boolean algebras” with operators, which
were my inspiration for distributoids. Jónsson and Tarski (1951-52)
extended Stone’s representation of Boolean algebras by considering
Boolean algebras with certain kinds of operations on them which
they called “operators”:

Concrete BA

• Let U be a set, and consider a collection of
subsets of U closed under intersection, union,
and relative complement (to U). This is a Boolean
algebra. M. Stone (1936) showed that every BA is
isomorphic to such a “field of sets.” This is
referred to as Stone’s Representation of BA’s.

• Jónsson and Tarski (1951 – actually their abstract
was in 1949) extended this result to BAO’s by
adding relations on U and defining “generalized
image operators” as follows.

Generalized Image Operators

Let U be a non-empty set and let {Ri}i∈I be an indexed set of
relations on U. Where Ri is of degree n + 1, and X1, …, Xn ⊆
U, define fi(X1, …, Xn) = Ri

*(X1, …, Xn) = {y: ∃ x1 ∈ X1 … ∃ xn ∈ Xn
s.t. Ri x1, …, xn y}.
This is a “generalized image operator,” and includes the
familiar special case for binary R:
 f(X) = R*X = {y: ∃ x ∈ X, R x y}.
If we think of X as a set of “possible worlds,” a “UCLA
proposition” (the set of worlds in which it is true), then R can
be thought of as (the converse of) Kripke’s relative possibility
relation, and o can be thought of as the possibility operator.

x1 xn y …

fi(X1, …, Xn) = Ri
*(X1, …, Xn) =

{y: ∃ x1∈X1, …, ∃ xn∈Xn s.t. Ri (x1, …, xn, y)

Xn fi(X1, …, Xn)

o o o

Ri Ri
*

These, especially the first two, are very familiar from modal logic.
Let (U, R) be a Kripke frame, i.e., U is a non-empty set of states and R is a binary
relation on U (“accessibility”). For A ⊆ U define:

Distributes over ∨ ¦A = {χ: ∃α (χRα & α 2 A)} “Possible A”
¦(A ∪ B) = ¦A ∪ ¦B ∨ ∨

Distributes over ∧
¤A = {χ: ∀α (not-χRα or α 2 A)} “Necessary A”
¤(A ∩ B) = ¤A ∩ ¤B ∧ ∧

Co-distribute over ∨
?A = {χ : 8α (not-χRα or α ∉ A)} “Impossible A”
?(A ∪ B) = ? A ∩ ? B ∨ ∧

Co-distributes over ∧
?A = {χ: ∃α (χRα & α ∉ A)} “Possible not A”
?(A ∩ B) = ? A ∪ ? B ∧ ∨

Unary Logical Paradigms of (Co-) Distribution

These, especially the first two, are very familiar from modal logic.
Let (U, R) be a Kripke frame, i.e., U is a non-empty set of states and R is a binary
relation on U (“accessibility”). For A ⊆ U define:

Distributes over ∨ ¦A = {χ: ∃α (χRα & α 2 A)} “Possible A”
¦(A ∪ B) = ¦A ∪ ¦B ∨ ∨

Distributes over ∧
¤A = {χ: ∀α (not-χRα or α 2 A)} “Necessary A”
¤(A ∩ B) = ¤A ∩ ¤B ∧ ∧

Co-distribute over ∨
?A = {χ : 8α (not-χRα or α ∉ A)} “Impossible A”
?(A ∪ B) = ? A ∩ ? B ∨ ∧

Co-distributes over ∧
?A = {χ: ∃α (χRα & α ∉ A)} “Possible not A”
?(A ∩ B) = ? A ∪ ? B ∧ ∨

Unary Logical Paradigms of (Co-) Distribution

Distribution
Types

 ± : (∨, ∨) ∨
→: (∨, ∧) ∧
←: (∧, ∨) ∧

 + : (∧, ∧) ∧
 : (∨, ∧) ∨
 : (∧, ∨) ∨

 +: (∨, ∨) ∧ ± : (∧, ∧) ∨

Now consider binary operations. They can have 8 different distribution
types, generalizing the Jónsson-Tarski requirement that the operations
distribute over ∨.

But what about “normality.” Remember that Jónsson and Tarski
required oi(x1, …, 0m, …, xn) = 0. (“One bad apple spoils the barrel.”)
But this rules out such natural logical operations as necessity, negation,
 and implication. Necessity preserves 1, negation inverts 0 to 1, and
implication does both:
 x1 → 1 = 1
 0 → x2 = 1

Let’s rewrite the distribution types, putting 0 in
place of ∨ and 1 in place of ∧:

 ± : (0, 0) 0

→ : (0, 1) 1
← : (1, 0) 1

 + : (1, 1) 1
 : (0, 1) 0
 : (1, 0) 0

 + : (0, 0) 1 ± : (1, 1) 0

Consider the distribution type of →. It can now be read:
 if first argument is 0 evaluate as 1; if second argument is 1
evaluate as 1, i.e.,
 x1 → 1 = 1
 0 → x2 = 1.

And similarly with the other distribution types.

Let’s focus on one on just one of these binary operations, →.

Suppose we are trying to algebraize an implication operation →.
It is natural to have a distributoid because → co-distributes over
∨ in the antecedent and distributes over ∧ in the consequent:

(x ∨ y) → z = (x → z) ∧ (y → z) co-distributes

x → (y ∧ z) = (x → y) ∧ (x → z) distributes

So the distribution type is: ∨, ∧ ∧

If we take a ternary accessibility relation R and define
A → B = {χ: ∀α, β: Rαχβ ⇒(α ∈ A ⇒ β ∈ B)}, then it can be shown
that
(A ∪ B) → C = (A → C) ∩ (B → C) co-distributes

 A → (B ∩ C) = (A → B) ∩ (A → C) distributes

The definition of → is analogous to the satisfaction clause for
relevant implication in the Routley-Meyer semantics for relevance
logic:

χ A → B iff ∀α, β: Rαχβ ⇒(α ∈ A ⇒ β ∈ B)
Two incidental differences:
1. In the Routley-Meyer semantics A and B are sentences, not sets.
2. And χ is in the first, not the second position: Rχαβ.
One person’s first or second position is another person’s third. It
doesn’t hurt to require the “abstraction variable,” in this case χ, to
always be in the last position.

This definition of → is analogous to the Jónsson-Tarski representation
of an n-ary operator in terms of an n + 1-place relation. BUT the
representation of → is not a generalized image operator. We need a
schematic way to determine the definition of the representation using
The distribution type of the operator we are representing, in this case:

 ∨, ∧ ∧

Let us begin to untangle this by rewriting the definition:

A → B = {χ: ∀α, β: Rαβχ ⇒(α ∈ A ⇒ β ∈ B)}
 = {χ: ∀α, β: not-Rαβχ or α ∉ A or β ∈ B)}

This is analogous to the Jónsson-Tarski representation of an n-ary
operator in terms of an n + 1-place relation. BUT the representation
of → is not a generalized image operator. We need a schematic way
to determine the definition of the representation using the
distribution type of the operator we are representing, in this case:

 ∨, ∧ ∧

Let us begin to untangle this by rewriting the definition

A → B = {χ: ∀α, β: Rαβχ ⇒(α ∈ A ⇒ β ∈ B)}
 = {χ: ∀α, β: not-Rαβχ or α ∉ A or β ∈ B)}

Realization Condition

What we need to do is figure out how to translate a distribution
type into its corresponding realization condition.

Here is a first try. Don’t worry, it will continue to get more
complicated.

Given an n-ary operator fi of distribution type t: τ1, ..., τn τ,

1) if τ = ∧, the realization condition for t is of the form:
∀ α1, …, αn :: R α1, …, αn,χ or ±(α1∈ A1) or … or ±(αn∈ An)
where each component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai
depending on whether τi is ∧ or ∨ respectively;

2) if τ = ∨, the realization condition for t is of the form:
∃ α1, …, αn :: R α1, …, αn,χ & ±(α1∈ A1) & … & ±(αn∈ An)
where each component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai
depending on whether τi is ∨ or ∧ respectively;

Note that 1) and 2) are appropriately dual.

Let’s see how these clauses work for our first two unary paradigms,
Possibility ¦ and necessity ¤.

1. Possibility distributes over ∨ ∨ ∨ ¦(x ∨ y) = ¦x ∨ ¦y

Since the output type is ∨ we get an existentially quantified
conjunction ∃α(Rαχ & ± (α∈ A)], and since the input type is ∨ we can
delete the ± and obtain ¦A = {χ: ∃α (χRα & α 2 A)}.

 Perfect!

:

Let’s see how these clauses work for our first two unary paradigms,
possibility ¦ and necessity ¤.

1. Possibility distributes over ∨ ∨ ∨ ¦(x ∨ y) = ¦x ∨ ¦y

Since the output type is ∨ we get an existentially quantified
conjunction ∃α(Rαχ & ± (α∈ A)], and since the input type is ∨ we can
delete the ± and obtain ¦A = {χ: ∃α (χRα & α 2 A)}.

 Perfect!
Oops! Close but no cigar!

Problem: ¦A requires Rχα but our realization clause has instead Rαχ.

Fix: Put in R-1 in place of R in Realization Condition.

Now let us look at our 2nd unary paradigm.

2. Necessity distributes over ¤ ∧ ∧ ¤(A ∧ B) = ¤A ∧ ¤B

Since the output type is ∧ we get a universally quantified
disjunction ∀α(Rαχ or ± (α∈ A)), and since the input type is ∧ we
can delete the ± and obtain ¤A = {χ: ∀α (χRα or α 2 A)}.

Now let us look at our 2nd unary paradigm.

2. Necessity distributes over ¤ ∧ ∧ ¤(A ∧ B) = ¤A ∧ ¤B

Since the output type is ∧ we get a universally quantified
disjunction ∀α(Rαχ or ± (α∈ A)), and since the input type is ∧ we e
can delete the ± and obtain ¤A = {χ: ∀α (αRχ or α 2 A)}.

Problem 1: αRχ should be negated.
Fix 1: Replace R with –R.

Problem 2: ¤A requires -Rχα but our realization clause has αRχ.
Fix 1: Same as before -- Replace R with R-1.

General fix . Fix: Put (-R)-1 in place of R in Realization Condition.

But why did we use the relation R in our first statement of the
Realization Condition, why not –R, or R-1, or (–R)-1 ? It turns out that
any of these relations would work just as well. We have in effect 4
different menus, differing only in these 4 ways. It is like choosing
food from different menus.

Things get more complicated when we get to ternary relations
and beyond. There is no such thing as the inverse of Rαβγ. But
there are all the permutations of its terms. It turns out that we
do not need all of these, but only the ones that exchange the
last term with any other.

 R-1α1 … αi … αnγ = Rα1 … γ … αnαi

Representation Theorem for Distributoids. Every distributoid
Isomorphic to a distributoid on a ring of sets with each operation f
being defined according to its distribution type using an accessibility
relation.
The essence of the proof requires a “canonical model” consisting
of all the prime filters on the distributoid and defining on them for
each n-ary operation f the canonical accessibility relation
 Rf = {(P1, …, Pn, Q) as follows:
• If the output type τ of f is ∨, then Rf is a universally quantified

disjunction ±(x1∈ P1), … r ±(xn∈ Pn) , f(x1, …, xn) ∈ Q, where each
component ±(xi∈ Pi) is either xi∈ Pi or xi∉ Pi depending on whether
τi is ∧ or ∨ respectively;

• If the output type τ of f is ∧, then Rf is an existentially quantified
conjunction of ±(x1∈ P1), … r ±(xn∈ Pn) , f(x1, …, xn) ∈ Q, where
each component ±(xi∈ Pi) is either xi∈ Pi or xi∉ Pi depending on
whether τi is ∨ or ∧ respectively;

Consider a (distributive) lattice-ordered residuated groupoid
(S, ≤ ±, ← , →):
 a ≤ c ← b iff a ∘ b ≤ c iff b ≤ a → c

It is part of the customary definition of “lattice-ordered groupoid”
that ± distributes over join in each argument. It can be proven that:

 (x ∨ y) → z = (x → z) ∧ (y → z) co-distributes
 x → (y ∧ z) = (x → y) ∧ (x → z) distributes

Symmetrically for ←.

 So distr. types. ±: (∨, ∨) ∨ Head of “family”
 → : (∨, ∧) ∧
 ← : (∧, ∨) ∧

→ and ← are “contrapositives” of ± in the sense that their distrib.
types are obtainable from the distrib. type of ± by interchanging an
input type with an output type while dualizing them.

Contrapositives allow us to group operators into natural
“families” as we saw with the lattice-ordered groupoid.

Consider the dual binary case (S, ≤, +, ,),
where + distributes over ∧ :

 ≥ iff + ≥ iff b ≥
It can be proven that:

 (y ∨ z) x = (y x) ∨ (z x) distributes

 z (x ∧ y) = (z x) ∨ (z y) co-distributes

Symmetrically for .

Distr. types + : (∧, ∧) ∧ Head of “family”
 : (∨, ∧) ∨
 : (∧, ∨) ∨

 ±: (∨, ∨) ∨
→ : (∨, ∧) ∧
← : (∧, ∨) ∧

 + : (∧, ∧) ∧
 : (∧, ∨) ∨
 : (∨, ∧) ∨

Are we missing any distribution types? We have these two families:

But we are missing:

 +: (∨, ∨) ∧ ± : (∧, ∧) ∨

These are each their own contrapositive.

Note that when ± is commutative (A ± B = B ± A)
then A → B = B ← A.

A lattice-ordered residuated groupoid can be realized
as a set U with a ternary relation R ⊆ U3:

A ± B =df {χ: ∃α ∈ A, β ∈ B: Rαβχ}
A → B =df {χ: ∀α, β: Rαχβ ⇒(α ∈ A ⇒ β ∈ B)}
B ← A =df {χ: ∀α,β: Rχαβ ⇒(α ∈ A ⇒ β ∈ B)}

Fact: A ⊆ C ← B iff A B ⊆ C iff B ⊆ A → C

A + B =df {χ: 8 α , β : Sαβχ) α ∈ A or β ∈ B}
A ⇁ B =df {χ: 9 α ∈ A, β ∉ B: Sαχβ}
B ↽ A =df {χ: 9 α ∉ A, β 2 B: Sχαβ}

Fact: A ¶ C↽ B iff A + B ¶ C iff B ¶ A ⇁ C

Dually (subtraction):

The definition of A ± B reflects the definition of “intensional
conjunction” (often called “fusion”) in the Routley-Meyer
semantics for relevance logic.

Since in that context it is taken to be commutative, the definition
of A → B can be seen as reflecting the Routley-Meyer definition
of relevant implication.

A distributive-lattice-ordered residuated groupoid serves as a
good paradigm for my “Generalized Galois Logics.” Their
acronymn is “ggl.” It is pronounced “gaggle.”

“Gaggle,” not “giggle”

Definition of a Gaggle
If τ = ∨, S(f, a1, …, an, b) abbreviates f(a1, …, an) ≤ b; and
if τ = ∧, it abbreviates b ≤ f(a1, …, an).

Two operations f and g satisfy the Abstract Law of Residuation
(or Galois Connection) when f and g are contrapositives (w.r.t.
some ith-place) and
 S(f, a1, …,ai, …, an, b) iff S(g, a1, …, b …, an, ai,)

Two operations f and g are relatives when they satisfy the
Abstract Law of Residuation w.r.t. some ith-place.

The family of operations {fi}i ∈ I is founded when there is an
operator h ∈ {fi}i ∈ I (the head) such that any other operation
g ∈ {fi}i ∈ I is a relative of f.

Now we can define a Gaggle as a distributoid (D, ∧, ∨, {fi∈I}) s.t.
{fi∈I}) is a founded family.

Gaggle

Double Ouroboros

f

g

Some examples of Gaggles

Distributive lattice-ordered forward possibility and backward
necessity (S, ≤, ¦, �↓)

Distributive lattice-ordered forward necessity and backwards
possibility (S, ≤, �, ¦↓)

Distrib. lattice-ordered residuated groupoid
(S, ≤ ±, ← , →)

Distrib. lattice-ordered dual residuated groupoid
(S, ≤, +, ,)

Not only can examples of lattice-ordered residuated groupoids be
constructed from a ternary relation, but it turns out that (up to
Isomorphism) all lattice-ordered residuated groupoids can be
obtained this way. And this can be generalized to arbitrary gaggles,
using n + 1 – placed relations to interpret n – ary operations.

Representation Theorem for Gaggles. Every gaggle is isomorphic to a
gaggle on a ring of sets with operations being defined according to
their distribution type using a single n + 1-placed accessibility
relation.

The proof is just as for distributoids except instead of multiple
canonical accessibility relations we need only one, Rf, where f is the
head of the family.

The definition of a distributoid (and a gaggle) is super delicate, with
lots of interacting parts, much like the movement of a fine watch. At
least I like to think of it that way.

But maybe you think it is more like a Rube Goldberg machine?

Over-engineered toothpaste tube squeezer

But maybe you think it is more like a Rube Goldberg machine?

It does take a little time to get comfortable with them.

Over-engineered toothpaste tube squeezer

Now we turn to another kind of duality, which I labeled “meta
duality.” It has not to do with a duality within a structure, but
rather a duality between structures, and in particular the duality
between a structure and its representation.

WARNING
BUMPY ROAD AHEAD
Few definitions, assumes
 some topology.

DEFINITION (STONE SPACE) Let T = hX; Oi be a topology. T is a Stone space if
compact and totally disconnected.

LEMMA (STONE SPACE OF A BA) Let A = hA; _, ¡i be a Boolean algebra. Also, let M
be the set of maximal filters of A. Let ha = f F 2 M : a 2 F g and B = f ha : a 2 A g.
Then T = hU; ¿ (B)i is a topological space that is a Stone space. TS(A) denotes
T whenever A is a BA.

LEMMA (ALGEBRA OF A STONE SPACE) Let T = hX; Oi be a Stone space, that is, a
compact totally disconnected topological space, and let OC(T) = f O: O 2 O & -

O 2 Og . Then A = hOC(T); \, [,¡i is a Boolean algebra. AB(T) denotes A

whenever T is a Stone space.

THEOREM (TOPOLOGICAL REPRESENTATION OF BAS) If A is a Boolean algebra then AB
(TS(A)) ≅ A.

THEOREM (ALGEBRAIC REALIZATION OF STONE SPACES) If T is a Stone space then TS

(AB(T)) T.

Stone’s Topological Duality for Boolean algebras

Duality of Boolean algebras and Stone Spaces

DEFINITION (PRIESTLEY SPACE) If T = hX; O, ·i is an ordered, compact, totally order
disconnected topological space, then T is a Priestley space.

LEMMA (PRIESTLEY SPACE OF A DISTRIBUTIVE LATTICE) Let A = hA; _, ^, 0, 1i be a
bounded distributive lattice. Let P be the set of prime filters of A.
Let ha = fF 2 P : a 2 F g and S = f ha : a 2 A g [f¡ha : a 2 A g. The ordered
topological space T = hP; ¿ (S),µi is compact and totally order disconnected. Thus,
TP(A) denotes T — the Priestley space of A — when A is a bounded distributive
lattice.

LEMMA (ALGEBRA OF A PRIESTLEY SPACE) Let T = hX; O, ·i be a Priestley space and let
OC(T)" = f O: O 2 (X) & O 2 O & −O 2 Og . A = hOC(T)"; \, [, ;, Xi is a
distributive lattice. ADL(T) denotes A when T is a Priestley space.

THEOREM (TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE LATTICES) If A = hA; _, ^, 0, 1i
is a bounded distributive lattice, then ADL(TP(A)) ≅ A.

THEOREM (ALGEBRAIC REALIZATION OF PRIESTLEY SPACES) If T is a Priestly space then
TP (ADL (T)) T.

Priestley’s Topological Duality for Distributive Lattices

Givant, Goldblatt, Halmos, Hansoul: Topological Duality for BAOs

 Givant, S. R.: Duality theories for Boolean algebras with operators, Springer, 2014.
 Goldblatt, R. I.: “Varieties of complex algebras,” Annals of Pure and Applied Logic 44,
 1989.
 Halmos, P. R.: “Algebraic logic, I. Monadic Boolean algebras,” Compositio Mathematica
 12, 1955.
 Hansoul, G.: “A duality for Boolean algebras with operators,” Algebra Universalis 17,
 1983.

Note the alphabetical order. The history, differences, and Influences
are complicated and could be a whole talk, or even seminar, on their
own.

The material on duality of gaggles also borrows heavily from Katalin Bimbó’s and
my book Generalized Galois Logics: Relational Semantics for Nonclassical
Logical Caculi, CSLI Lecture Notes, University of Chicago Press, 2008.

DEFINITION (GAGGLE SPACE) Let T = hX; O, ·, Rn +1 i be a topology that is a
Priestley space with an additional relation Rn +1 used to define n-ary operations in
the family {fi}i ∈ I with each operation f having a distribution type
t: τ1, ..., τn τn +1 is defined on clopen sets,
 requiring O 1, . . . , On 2 OC(T)) f(O1, . . . , On) 2 OC(T),

with f defined using the realization condition below.

1) if τ = ∧, the realization condition for f is of the form:
∀ α1, …, αn :: R α1, …, αn,χ or ±(α1∈ O1) or … or ±(αn∈ On) where each
component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on whether τi is ∧ or ∨
respectively;

2) 2) if τ = ∨, the realization condition for f is of the form:
∃ α1, …, αn :: R α1, …, αn,χ & ±(α1∈ O1) & … & ±(αn∈ On) where each
component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on whether τi is ∨ or ∧
respectively.

Hindsight tells me that “Gaggle Space” is a bad name for two reasons:

1) We shall be showing that it is also a dual space for distributoids, not
Just the more specialized gaggles.

2) Similar spaces are named after their inventors: e. g. Stone spaces
and Priestley spaces. (It goes without saying that these inventors did
not name them after themselves.)

So I shall here refer to “Gaggle Spaces” as Bimbó spaces to honor
Katalin Bimbó.

THEOREM (TOPOLOGICAL REPRESENTATION OF GAGGLES)
If A is a gaggle then Aggl

(T
B

(A)) ≅ A .

THEOREM. (ALGEBRAIC REALIZATION OF BIMBó SPACES)
If T is a Bimbó space then TB

(Aggl
(T)) T .

LEMMA (BIMBó SPACE OF A GAGGLE) Let A be a gaggle, and let
h and S be as in a Priestley space, i.e., ha = fF 2 P : a 2 F g and
S = f ha : a 2 A g [f¡ha : a 2 A . Then T = (P; τ(S), ⊆, R) ,
where R is the canonical accessibilty relation , is a Bimbó space.
TB(A) denotes the Bimbó space of a gaggle A.
LEMMA. (GAGGLE OF A BIMBó SPACE) If T = (X; O, ≤, R) is a
Bimbó space, then A = (OC(T) ; ∩, ∪, ∅, X, f) is a gaggle. Therefore,
Aggl(T) denotes A when T is a Bimbó space.

Finally we turn, or return, to duality for distributoids. Somehow though Kata
Bimbó and I proved duality results for gaggles in our 2008 book Generalized
Galois Logics, we overlooked distributoids, perhaps they seemed to simple.

DEFINITION (DISTRIBUTOID SPACE) Let T = (hX; O, ·, {Ri}i ∈) be a
topology that is a Priestley space with additional relations {Ri}i ∈I used
to define operations {fi}i ∈ I with each operation fi having a distribution
type tii: τ1, ..., τn τn +1 is defined on clopen sets,
 requiring O 1, . . . , On 2 OC(T)") f(O1, . . . , On) 2 OC(T),
with f defined using the realization condition below.

1) if τ = ∧, the realization condition for f is of the form:
∀ α1, …, αn :: R α1, …, αn,χ or ±(α1∈ O1) or … or ±(αn∈ On) where each
component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on whether τi is ∧ or ∨
respectively;

2) 2) if τ = ∨, the realization condition for f is of the form:
∃ α1, …, αn :: R α1, …, αn,χ & ±(α1∈ O1) & … & ±(αn∈ On)
where each component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on
whether τi is ∨ or ∧ respectively.

THEOREM (TOPOLOGICAL REPRESENTATION OF DISTRIBUTOIDS)
If A is a distributoid then Ad(TDS(A)) ≅ A .

THEOREM. (ALGEBRAIC REALIZATION OF DISTRIBUTOID SPACES)
If T is a distributoid space then TDS(Ad(T)) T

LEMMA (DISTRIBUTOID SPACE OF A DISTRIBUTOID) Let A be a
distributoid, and let h and S be as in a Priestley space, i.e., ha =
fF 2 P : a 2 F g and S = f ha : a 2 A g [f¡ha : a 2 A . Then
T = (P; τ(S), ⊆, {Ri}i∈I) , where {Ri}i∈I is the set canonical accessibilty
relations , is a distributoid space. Tds(A) denotes the distributoid
space of a distributoid A.
LEMMA. (DISTRIBUTOID OF A DISTRIBUTOID SPACE) If T = (X;
O, ≤, {Ri}i∈I) is an ordered topological space, then A = (OC(T) ; ∩,
∪, ∅, X, {fi} i∈I) is a distributoid. Ad(T) denotes A when T is a
distributoid space.

Oh, I forgot to mention that there is a generalization of gaggles,
Symmetric Gaggles, which may be viewed as an interacting
combination of a gaggle and a dual gaggle, both on the same
distributive lattice. We will leave that for another occasion.

Oh, also forgot to mention distributoids, gaggles, and symmetric
Gaggles defined on posets and lattices. On posets is easy, on
lattices hard. Chrysafis Hartonas has done some good recent
work here. Just google!
l

 Some References to “my” work

 1990. "Gaggle Theory, an Abstraction of Galois Connections and
 Residuation, with Applications to Negation, Implication, and Various
 Logical Operators," in Logics in AI, ed. J. Van Eijck, LNAI, Springer Verlag.

 1993. "Partial-Gaggles Applied to Substructural Logics," in Substructural
 Logics, eds. P. Schroeder-Heister and K. Dosen, Oxford Univ. Press.

 1993. "A Kripke Semantics for Linear Logic," (with Gerard Allwein),
 The Journal of Symbolic Logic.

 1993. "Gaggle Theory Applied to Modal, Intuitionistic, and Relevance Logics,“
 in Logik und Mathematik, eds. I. Max and W. Stelzner, de Gruyter.

 1996. "Generalized Ortho-Negation," in Negation: A Concept in Focus,
 ed. H. Wansing, de Gruyter.

 2001. Algebraic Methods in Philosophical Logic (with G. Hardgree), OUP.

 2008. Generalized Galois Logics: Relational Semantics of Nonclassical
Logical Calculi (with K. Bimbo), CSLI.

Thank you!

And as the first speaker let me thank on behalf of all of us
 the organizers of this special workshop:

Peter Jipsen , Alexander Kurz, and M. Andrew Moshier.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Boolean Algebra with Operators (BAO)
	Concrete BA
	Generalized Image Operators
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	“Gaggle,” not “giggle”
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Duality of Boolean algebras and Stone Spaces
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55

