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Ouroboros 

Duality 



As might be guessed from the workshop title, my talk will be about  
Duality in Algebra and Logic. The algebraic structures I will be talking  
about, distributoids and gaggles, are generalizations of the Boolean  
algebra of classical logic, and apply to many non-classical logics. 
And duality at the “object level” is built into their nature.  They are  
closely related to Jonsson and Tarski’s Boolean algebras with operators. 
 
Distributoids have operations on a distributive lattices that distribute  
over join and meet, but in the process they are allowed to change  
each to its dual, joint to meet, and meet to join.   
 
Gaggles tie together operations on the same distributoid into a family of  
operations using duality.  I will spend most of this talk explaining  
distributoids and gaggles, but I will end the talk by talking about  
“meta level” duality for distributoids and gaggles, namely a topological  
duality. 



Boolean Algebra with Operators (BAO) 

• (B, ∧, ∨, −, {oi}i∈I) 
• (B, ∧, ∨, −) is a Boolean algebra [0 = a ∧ −a] 
• Each oi is  
• i) an operation on B that is ii) normal and iii) additive, i.e. 

 i) For some n, oi: Bn → B 
ii) For each m ≤ n, fi(x1, …, 0m, …, xn) = 0    
iii) fi(x1, …, (a ∨ b)m, …, xn)  =  fi(x1, …, am, …, xn) ∨ fi(x1, …, bm, …, xn) 
It follows from (iii) that each operation fi  is monotonic: 
                   a ≤ b implies fi(x1, …, am, …, xn) ≤  fi(x1, …, bm, …, xn) 
                            
 

 
 
We begin by talking about “Boolean algebras” with operators, which 
were my inspiration for distributoids. Jónsson and Tarski (1951-52) 
extended Stone’s representation of Boolean algebras by considering 
Boolean algebras with certain kinds of operations on them which 
they called “operators”: 
 
 



Concrete BA 

• Let U be a set, and consider a collection of 
subsets of U closed under intersection, union, 
and relative complement (to U).  This is a Boolean 
algebra.  M. Stone (1936) showed that every BA is 
isomorphic to such a “field of sets.”  This is 
referred to as Stone’s Representation of BA’s. 

• Jónsson and Tarski (1951 – actually their abstract 
was in 1949) extended this result to BAO’s by 
adding relations on U and defining “generalized 
image operators” as follows. 
 



Generalized Image Operators 

Let U be a non-empty set and let {Ri}i∈I be an indexed set of 
relations on U.  Where Ri is of degree n + 1, and X1, …, Xn  ⊆ 
U, define fi(X1, …, Xn) = Ri

*(X1, …, Xn) = {y: ∃ x1 ∈ X1 … ∃ xn ∈ Xn 
s.t.  Ri x1, …, xn y}.   
This is a “generalized image operator,” and includes the 
familiar special case for binary R:  
 f(X) = R*X = {y: ∃ x ∈ X, R x y}.  
If we think of X as a set of “possible worlds,” a “UCLA 
proposition” (the set of worlds in which it is true), then R can 
be thought of as (the converse of) Kripke’s relative possibility 
relation, and o can be thought of as the possibility operator. 

 



x1 xn    y … 

fi(X1, …, Xn) = Ri
*(X1, …, Xn) =  

{y: ∃ x1∈X1, …, ∃ xn∈Xn s.t.  Ri (x1, …, xn, y) 

Xn fi(X1, …, Xn)  

o o o 

Ri Ri
* 



These, especially the first two, are very familiar from modal logic. 
Let (U, R) be a Kripke frame, i.e., U is a non-empty set of states and R is a binary 
relation on U (“accessibility”). For A ⊆ U define: 

 
Distributes over ∨  ¦A  = {χ: ∃α (χRα & α 2 A)}         “Possible A” 
¦(A ∪ B) = ¦A ∪ ¦B              ∨  ∨  

 
Distributes over ∧  
¤A  = {χ: ∀α (not-χRα or α 2 A)}   “Necessary A” 
¤(A ∩ B) = ¤A ∩ ¤B                            ∧  ∧   
 

Co-distribute over ∨ 
?A = {χ : 8α (not-χRα or α ∉ A)}    “Impossible A” 
?(A ∪ B) = ? A ∩ ? B                             ∨  ∧  
 
Co-distributes over ∧  
?A  =  {χ: ∃α (χRα & α ∉ A)}            “Possible not A” 
?(A ∩ B) = ? A ∪ ? B                              ∧  ∨  
 

Unary Logical Paradigms of (Co-) Distribution  
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Unary Logical Paradigms of (Co-) Distribution  

Distribution 
Types 



 ± : (∨, ∨)   ∨  
→:  (∨, ∧)   ∧  
←:  (∧, ∨)   ∧      

  + :  (∧, ∧)  ∧ 
  :  (∨, ∧)   ∨ 
  :  (∧, ∨)  ∨  
      

 +:  (∨, ∨)     ∧       ± :  (∧, ∧)   ∨          
    

Now consider binary operations. They can have 8 different distribution 
types, generalizing the Jónsson-Tarski requirement that the operations 
distribute over ∨. 

   

    
   

But what about “normality.”  Remember that Jónsson and Tarski  
required oi(x1, …, 0m, …, xn) = 0.  (“One bad apple spoils the barrel.”) 
But this rules out such natural logical operations as necessity, negation, 
 and implication.  Necessity preserves 1, negation inverts 0 to 1, and  
implication does both: 
   x1 → 1 = 1 
   0 → x2 = 1 
 
 
 



  
  

Let’s rewrite the distribution types, putting 0 in 
place of ∨ and 1 in place of ∧: 
 
  ± :   (0, 0)  0  

→ :   (0, 1)  1     
← :   (1, 0)  1  

 +  :  (1, 1)  1 
  :  (0, 1)  0  
   :  (1, 0)  0 
  

    
   

 
 +  :   (0, 0)  1       ± :   (1, 1)  0          
   

Consider the distribution type of →. It can now be read:  
 if first argument is 0 evaluate as 1; if second argument is 1 
evaluate as 1, i.e., 
                    x1 → 1 = 1 
        0 → x2 = 1. 
 
And similarly with the other distribution types. 



Let’s focus on one on just one of these binary operations, →.   
 
Suppose we are trying to algebraize an implication operation →.   
It is natural to have a distributoid because → co-distributes over 
∨ in the antecedent and distributes over ∧ in the consequent: 
 
(x ∨ y) → z = (x → z) ∧ (y → z)   co-distributes 
 
x → (y ∧ z) = (x → y) ∧ (x → z)   distributes 
 
So the distribution type is: ∨, ∧  ∧ 



If we take a ternary accessibility relation R and define 
A → B  = {χ: ∀α, β:  Rαχβ ⇒(α ∈ A ⇒ β ∈ B)}, then it can be shown 
that 
(A ∪ B) → C = (A → C) ∩ (B → C)   co-distributes 
 
 A → (B ∩ C) = (A → B) ∩ (A → C)   distributes 
 
The definition of → is analogous to the satisfaction clause for  
relevant implication in the Routley-Meyer semantics for relevance 
logic: 
 
χ  A → B  iff  ∀α, β:  Rαχβ ⇒(α ∈ A ⇒ β ∈ B) 
Two incidental differences: 
1. In the Routley-Meyer semantics A and B are sentences, not sets. 
2.  And χ is in the first, not the second position:   Rχαβ. 
One person’s first or second position is another person’s third.  It 
doesn’t hurt to require the “abstraction variable,” in this case χ, to 
always  be in the last position.   
 
 



This definition of → is analogous to the Jónsson-Tarski representation 
of an n-ary operator in terms of an n + 1-place relation.  BUT the 
representation  of → is not a generalized image operator.  We need a 
schematic way to determine the definition of the representation using  
The distribution type of the operator we are representing, in this case: 
 
            ∨, ∧  ∧ 
 
Let us begin to untangle this by rewriting the definition: 
 
A → B  = {χ: ∀α, β:  Rαβχ ⇒(α ∈ A ⇒ β ∈ B)} 
           = {χ: ∀α, β:  not-Rαβχ or α ∉ A or β ∈ B)} 
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Realization Condition 



What we need to do is figure out how to translate a distribution  
type into its corresponding realization condition. 
 
Here is a first try.  Don’t worry, it will continue to get more 
complicated.   



Given an n-ary operator fi of distribution type t: τ1, ..., τn  τ, 
 
1) if τ = ∧, the realization condition for t is of the form: 
∀ α1, …, αn :: R α1, …, αn,χ or ±(α1∈ A1) or … or ±(αn∈ An) 
where each component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai 
depending on whether τi is ∧ or ∨ respectively; 
 
2) if τ = ∨, the realization condition for t is of the form: 
∃ α1, …, αn :: R α1, …, αn,χ &  ±(α1∈ A1) & … & ±(αn∈ An) 
where each component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai 
depending on whether τi is ∨ or ∧ respectively; 
 
Note that 1) and 2) are appropriately dual. 
 



Let’s see  how these clauses work for our first two unary paradigms,  
Possibility  ¦ and necessity   ¤.    

  
1. Possibility distributes over ∨      ∨  ∨      ¦(x ∨ y) = ¦x ∨ ¦y 

 
Since the output type is ∨ we get an existentially quantified  
conjunction  ∃α(Rαχ & ± (α∈ A)], and since the input type is  ∨  we can 
delete the ± and obtain  ¦A  = {χ: ∃α (χRα & α 2 A)}.  

 
    Perfect! 
  
  
  
   
 
: 
 



Let’s see  how these clauses work for our first two unary paradigms,  
possibility ¦ and necessity  ¤.    

  
1. Possibility distributes over ∨    ∨  ∨      ¦(x ∨ y) = ¦x ∨ ¦y 

 
Since the output type is ∨ we get an existentially quantified  
conjunction  ∃α(Rαχ & ± (α∈ A)], and since the input type is  ∨  we can 
delete the ± and obtain  ¦A  = {χ: ∃α (χRα & α 2 A)}.  

 
    Perfect! 
Oops! Close but no cigar!   
 

Problem: ¦A requires Rχα but our realization clause has instead Rαχ. 

 
Fix:  Put in R-1 in place of R in Realization Condition. 

  
 



Now let us look at our 2nd unary paradigm. 

2. Necessity distributes over ¤     ∧  ∧          ¤(A ∧ B) = ¤A ∧ ¤B 
 
Since the output type is ∧ we get a universally quantified  
disjunction  ∀α(Rαχ or ± (α∈ A)), and since the input type is ∧  we  
can delete the ± and obtain ¤A  = {χ: ∀α (χRα or α 2 A)}.  
 
 



Now let us look at our 2nd unary paradigm. 

2. Necessity distributes over ¤     ∧  ∧          ¤(A ∧ B) = ¤A ∧ ¤B 
 
Since the output type is ∧ we get a universally quantified  
disjunction  ∀α(Rαχ or ± (α∈ A)), and since the input type is ∧  we e 
can delete the ± and obtain ¤A  = {χ: ∀α (αRχ or α 2 A)}.  
 
Problem 1: αRχ should be negated.   
Fix 1:  Replace R with –R. 

Problem 2: ¤A requires -Rχα but our realization clause has αRχ. 
Fix 1:  Same as before -- Replace R with R-1. 
 
General fix .  Fix:  Put (-R)-1 in place of R in Realization Condition. 



But why did we use the relation R in our first statement of the 
Realization Condition, why not –R, or R-1,  or (–R)-1 ?  It turns out that 
any of these relations would work just as well.  We have in effect 4 
different menus, differing only in these 4 ways.  It is like choosing 
food from different menus.  





Things get more complicated when we get to ternary relations 
and beyond.  There is no such thing as the inverse of Rαβγ. But 
there are all the permutations of its terms. It turns out that we 
do not need all of these, but only the ones that exchange the 
last term with any other.  
 
           R-1α1 … αi … αnγ = Rα1 … γ … αnαi 
 



Representation Theorem for Distributoids.  Every distributoid   
Isomorphic to a distributoid on a ring of sets  with each operation f 
being defined according to its distribution type using an accessibility 
relation.  
The essence of the proof requires a “canonical model” consisting 
of all the prime filters on the distributoid and defining on them for 
each n-ary operation f the canonical accessibility relation  
   Rf = {(P1, …, Pn, Q) as follows: 
• If the output type τ of f is ∨, then Rf  is a universally quantified 

disjunction  ±(x1∈ P1), …  r ±(xn∈ Pn) , f(x1, …, xn) ∈ Q, where each 
component ±(xi∈ Pi) is either xi∈ Pi or xi∉ Pi depending on whether 
τi is ∧ or ∨ respectively; 

• If the output type τ of f is ∧, then Rf  is an existentially quantified 
conjunction of ±(x1∈ P1), …  r ±(xn∈ Pn) , f(x1, …, xn) ∈ Q, where 
each component ±(xi∈ Pi) is either xi∈ Pi or xi∉ Pi depending on 
whether τi is ∨ or ∧ respectively;   
 



Consider a (distributive) lattice-ordered residuated groupoid  
(S, ≤ ±, ← , → ): 
 a ≤ c ← b  iff  a ∘ b ≤ c  iff  b ≤ a → c 
 
It is part of the customary definition of “lattice-ordered groupoid” 
that ± distributes over join in each argument. It can be proven that: 
  
  (x ∨ y) → z = (x → z) ∧ (y → z)   co-distributes 
 x → (y ∧ z) = (x → y) ∧ (x → z)   distributes 
 
Symmetrically for  ←. 
 
 So distr. types.    ±:  (∨, ∨)   ∨          Head of “family” 
      → :  (∨, ∧)   ∧  
      ← :  (∧, ∨)   ∧  
 
→ and ← are “contrapositives” of ± in the sense that their distrib. 
types are obtainable from the distrib. type of ± by interchanging an 
input type with an output type while  dualizing them. 
 
 



Contrapositives allow us to group operators into natural 
“families”  as we saw with the lattice-ordered groupoid. 
 
Consider the dual binary case  (S, ≤, +,  , ),  
where + distributes over ∧ : 

 ≥    iff  +  ≥  iff b ≥    
It can be proven that: 
 
  (y ∨ z)  x = (y  x) ∨ (z  x)   distributes 
 
 z  (x ∧ y) = (z  x) ∨ (z y)   co-distributes 
  
Symmetrically for  . 
 
Distr. types        + :   (∧, ∧)  ∧         Head of “family” 
                            :   (∨, ∧)  ∨                  
               :   (∧, ∨)  ∨  
   
  
 



 ±:  (∨, ∨)   ∨  
→ :  (∨, ∧ )  ∧      
← :  (∧, ∨)   ∧  

 + :  (∧, ∧)  ∧ 
 :  (∧, ∨)   ∨  
 :  (∨, ∧)   ∨ 
  

Are we missing any distribution types?  We have these two families: 
 

But we are missing: 
    
   +:   (∨, ∨)   ∧     ±  :  (∧, ∧)   ∨ 
 
These are each their own contrapositive.  
 
      
   



 
Note that when ± is commutative (A ± B  = B ± A) 
then A → B = B ← A.  
 
 

 
 
 
 

    

A lattice-ordered residuated groupoid can be realized 
as a set U with a ternary relation R ⊆ U3: 

A ± B   =df  {χ: ∃α ∈ A, β ∈ B:  Rαβχ} 
A → B  =df {χ: ∀α, β:  Rαχβ ⇒(α ∈ A ⇒ β ∈ B)} 
B ← A  =df  {χ: ∀α,β:  Rχαβ ⇒(α ∈ A ⇒ β ∈ B)} 
 
Fact: A ⊆  C ← B  iff  A  B  ⊆  C  iff  B  ⊆  A → C    

 



A + B  =df {χ: 8 α , β :  Sαβχ ) α ∈ A or β ∈ B} 
A ⇁ B  =df {χ: 9 α ∈ A, β ∉ B:  Sαχβ} 
B ↽ A  =df {χ: 9 α ∉ A, β 2 B:  Sχαβ} 
 
Fact: A ¶ C↽ B  iff  A + B ¶ C  iff  B ¶ A ⇁ C     
 
 
 
 

Dually (subtraction): 



The definition of A ± B reflects the definition of “intensional 
conjunction” (often called “fusion”) in the Routley-Meyer 
semantics for relevance logic. 
 
Since in that context it is taken to be commutative, the definition 
of A → B can be seen as reflecting the Routley-Meyer definition 
of relevant implication. 
 
A distributive-lattice-ordered residuated groupoid serves as a 
good paradigm for my “Generalized Galois Logics.” Their 
acronymn is “ggl.”    It is pronounced “gaggle.”  
 
 
 



“Gaggle,” not “giggle” 

 



 
 
 

Definition of a Gaggle 
If τ = ∨,  S(f, a1, …, an, b) abbreviates f(a1, …, an) ≤ b; and 
if τ = ∧,  it abbreviates b ≤ f(a1, …, an). 
 
Two operations f and g satisfy the Abstract Law of Residuation 
(or Galois Connection) when f and g are contrapositives (w.r.t. 
some ith-place) and 
 S(f, a1, …,ai, …, an, b)  iff  S(g, a1, …, b …, an, ai,)  
 
Two operations f and g are relatives when they satisfy the 
Abstract Law of Residuation w.r.t. some ith-place. 
 
The family of operations {fi}i ∈ I  is founded when there is an 
operator h ∈ {fi}i ∈ I  (the head) such that any other operation  
g ∈ {fi}i ∈ I  is a relative of f. 
 
Now we can define a Gaggle as a distributoid (D, ∧, ∨, {fi∈I}) s.t. 
{fi∈I}) is a founded family. 
   



Gaggle  

Double Ouroboros 

f 

g 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some examples of Gaggles 
 

Distributive lattice-ordered forward possibility and backward 
necessity (S, ≤, ¦, �↓) 
 
Distributive lattice-ordered forward necessity and backwards 
possibility (S, ≤, �, ¦↓) 

Distrib. lattice-ordered residuated groupoid  
(S, ≤ ±, ← , → ) 
 

Distrib. lattice-ordered dual residuated groupoid   
(S, ≤, +,  , ) 

 



Not only can examples of lattice-ordered residuated groupoids be 
constructed  from a ternary relation, but it turns out that (up to 
Isomorphism) all lattice-ordered residuated groupoids can be 
obtained this way.  And this can be generalized to arbitrary gaggles, 
using n + 1 – placed relations to interpret n – ary operations.  
 
 



Representation Theorem for Gaggles.  Every gaggle is isomorphic to a 
gaggle on a ring of sets with operations being defined according to  
their distribution type using a single  n + 1-placed accessibility 
relation.  
 
The proof is just as for distributoids except instead of multiple 
canonical accessibility relations we need only one, Rf, where f is the 
head of the family. 

 
 



The definition of a distributoid (and a gaggle) is super delicate, with 
lots of interacting parts, much like the movement of a fine watch.  At 
least I like to think of it that way. 



But maybe you think it is more like a Rube Goldberg machine? 

Over-engineered toothpaste tube squeezer 



But maybe you think it is more like a Rube Goldberg machine?  

It does take a little time to get comfortable with them. 

Over-engineered toothpaste tube squeezer 



Now we turn to another kind of duality, which I labeled “meta 
duality.”  It has not to do with a duality within a structure, but 
rather a duality between structures, and in particular the duality 
between a structure and its representation. 
 
 



WARNING 
BUMPY ROAD AHEAD 
Few definitions, assumes 
       some topology. 



DEFINITION (STONE SPACE)  Let T = hX; Oi be a topology. T is a Stone space if 
compact and totally disconnected. 
 
LEMMA (STONE SPACE OF A BA)  Let A = hA; _, ¡i be a Boolean algebra. Also, let M 
be the set of maximal filters of A.  Let ha = f F 2 M : a 2 F g and B = f ha : a 2 A g.  
Then T = hU; ¿ (B)i is a topological space that is a Stone space.  TS(A) denotes 
T whenever A is a BA. 
 
LEMMA (ALGEBRA OF A STONE SPACE) Let T = hX; Oi be a Stone space, that is, a 
compact  totally disconnected topological space, and let OC(T) = f O: O 2 O & -

O 2 Og . Then A = hOC(T);  \, [,¡i is a Boolean algebra. AB(T) denotes A 

whenever T is a Stone space. 
 
THEOREM (TOPOLOGICAL REPRESENTATION OF BAS) If A is a Boolean algebra then AB 
(TS(A)) ≅ A. 
 
THEOREM (ALGEBRAIC REALIZATION OF STONE SPACES)  If T is a Stone space then TS 

(AB(T))  T. 

Stone’s Topological Duality for Boolean algebras 



Duality of Boolean algebras and Stone Spaces 



DEFINITION (PRIESTLEY SPACE)   If T = hX; O, ·i is an ordered, compact, totally order 
disconnected topological space, then T is a Priestley space. 
 
LEMMA (PRIESTLEY SPACE OF A DISTRIBUTIVE LATTICE)  Let A = hA; _, ^, 0, 1i be a 
bounded distributive lattice.  Let P be the set of prime filters of A.  
Let ha = fF 2 P : a 2 F g and S = f ha : a 2 A g [ f¡ha : a 2 A g.  The ordered 
topological space T = hP; ¿ (S),µi is compact and totally order disconnected. Thus, 
TP(A) denotes T — the Priestley space of A — when A is a bounded distributive 
lattice. 
 
LEMMA (ALGEBRA OF A PRIESTLEY SPACE)  Let T = hX; O, ·i be a Priestley space and let 
OC(T)" = f O: O 2 (X)  &  O 2 O  &  −O 2 Og . A = hOC(T)"; \, [, ;, Xi is a 
distributive lattice.   ADL(T) denotes A when T is a Priestley space. 
 
THEOREM (TOPOLOGICAL REPRESENTATION OF DISTRIBUTIVE LATTICES)  If A = hA; _, ^, 0, 1i 
is a bounded distributive lattice, then ADL(TP(A)) ≅ A. 
 
THEOREM (ALGEBRAIC REALIZATION OF PRIESTLEY SPACES)  If T is a Priestly space then  
TP (ADL (T))  T. 
 
 

Priestley’s Topological Duality for Distributive Lattices 



Givant, Goldblatt, Halmos, Hansoul: Topological Duality for BAOs 

 Givant, S. R.: Duality theories for Boolean algebras with operators, Springer, 2014. 
 Goldblatt, R. I.: “Varieties of complex algebras,” Annals of Pure and Applied Logic 44, 
 1989. 
 Halmos, P. R.: “Algebraic logic, I. Monadic Boolean algebras,” Compositio Mathematica 
 12, 1955. 
 Hansoul, G.: “A duality for Boolean algebras with operators,” Algebra Universalis 17, 
 1983. 

Note the alphabetical order.  The history, differences, and Influences 
are complicated and could be a whole talk, or even seminar, on their 
own. 



The material on duality of gaggles also borrows heavily from Katalin Bimbó’s and 
my book  Generalized Galois Logics:  Relational Semantics for  Nonclassical 
Logical Caculi, CSLI Lecture Notes, University of Chicago Press,  2008.   
 
DEFINITION (GAGGLE SPACE) Let T = hX; O, ·, Rn +1 i be a topology that is a 
Priestley space with an additional relation Rn +1  used to define n-ary operations in 
the family {fi}i ∈ I  with each operation f having a distribution type  
t: τ1, ..., τn  τn +1 is defined on clopen sets,  
 requiring  O 1, . . . , On 2 OC(T) ) f(O1, . . . , On) 2 OC(T), 
 
with f defined using the realization condition below. 
 
1) if τ = ∧, the realization condition for f is of the form: 
∀ α1, …, αn :: R α1, …, αn,χ  or  ±(α1∈ O1) or … or ±(αn∈ On) where each 
component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on whether τi is ∧ or ∨ 
respectively; 
 
2) 2) if τ = ∨, the realization condition for f is of the form: 
∃ α1, …, αn :: R α1, …, αn,χ &  ±(α1∈ O1) & … & ±(αn∈ On) where each  
component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on whether τi is ∨ or ∧ 
respectively. 
 



Hindsight tells me that “Gaggle Space” is a bad name for two reasons: 
 
1) We shall be showing that it is also a dual space for distributoids, not  
Just the more specialized gaggles.  
 
2) Similar spaces are named after their inventors:  e. g. Stone spaces  
and Priestley spaces. (It goes without saying that these inventors did 
not name them after themselves.) 
 
So I shall here refer to “Gaggle Spaces” as Bimbó spaces to honor  
Katalin Bimbó. 



THEOREM (TOPOLOGICAL  REPRESENTATION  OF GAGGLES) 
If A is a gaggle then Aggl

(T
B

(A)) ≅ A . 

THEOREM.  (ALGEBRAIC  REALIZATION  OF BIMBó SPACES) 
If T is a Bimbó space then TB

(Aggl
(T))  T . 

LEMMA (BIMBó SPACE OF A GAGGLE)     Let A be a gaggle, and let 
h and  S be as in a Priestley space, i.e., ha = fF 2 P : a 2 F g and 
S = f ha : a 2 A g [ f¡ha : a 2 A . Then T = (P; τ(S), ⊆, R) , 
where R is the canonical accessibilty relation , is a Bimbó space.  
TB(A) denotes the Bimbó space of a gaggle A.   
LEMMA.  (GAGGLE  OF  A  BIMBó SPACE)     If T = (X; O, ≤, R ) is a 
Bimbó space, then A = (OC(T) ; ∩, ∪, ∅, X, f) is a gaggle. Therefore, 
Aggl(T) denotes A when T is a Bimbó space. 
 

 



 
Finally we turn, or return, to duality for distributoids.  Somehow though Kata 
Bimbó and I proved duality results for gaggles in our 2008 book Generalized 
Galois Logics, we overlooked distributoids, perhaps they seemed to simple.  
 
DEFINITION (DISTRIBUTOID  SPACE) Let T = (hX; O, ·, {Ri}i ∈) be a  
topology that is a Priestley space with additional relations {Ri}i ∈I  used  
to define operations {fi}i ∈ I  with each operation fi having a distribution  
type tii: τ1, ..., τn  τn +1 is defined on clopen sets,  
 requiring  O 1, . . . , On 2 OC(T)" ) f(O1, . . . , On) 2 OC(T), 
with f defined using the realization condition below. 
 
1) if τ = ∧, the realization condition for f is of the form: 
∀ α1, …, αn :: R α1, …, αn,χ  or  ±(α1∈ O1) or … or ±(αn∈ On) where each 
component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on whether τi is ∧ or ∨ 
respectively; 
 
2) 2) if τ = ∨, the realization condition for f is of the form: 
∃ α1, …, αn :: R α1, …, αn,χ &  ±(α1∈ O1) & … & ±(αn∈ On) 
where each component ±(αi∈ Ai) is either αi∈ Ai or αi∉ Ai depending on 
whether τi is ∨ or ∧ respectively. 
 
  



THEOREM (TOPOLOGICAL  REPRESENTATION  OF DISTRIBUTOIDS) 
If A is a distributoid then Ad(TDS(A)) ≅ A . 

THEOREM.  (ALGEBRAIC  REALIZATION  OF  DISTRIBUTOID SPACES) 
If T is a distributoid space then TDS(Ad(T))  T 

LEMMA (DISTRIBUTOID SPACE OF A DISTRIBUTOID)     Let A be a 
distributoid, and let h and  S be as in a Priestley space, i.e., ha = 
fF 2 P : a 2 F g and S = f ha : a 2 A g [ f¡ha : a 2 A . Then 
T = (P; τ(S), ⊆, {Ri}i∈I) , where {Ri}i∈I is the set canonical accessibilty 
relations , is a distributoid space.  Tds(A) denotes the distributoid 
space of a distributoid  A.   
LEMMA.  (DISTRIBUTOID  OF  A  DISTRIBUTOID SPACE)     If T = (X; 
O, ≤, {Ri}i∈I) is an ordered topological space, then A = (OC(T) ; ∩, 
∪, ∅, X, {fi} i∈I)  is a distributoid.  Ad(T) denotes A when T is a 
distributoid space. 
 

 



Oh, I forgot to mention that there is a generalization of gaggles, 
Symmetric Gaggles, which may be viewed as an interacting 
combination of a gaggle and a dual gaggle, both on the same 
distributive lattice.  We will leave that for another occasion. 
 
Oh, also forgot to mention distributoids, gaggles, and symmetric  
Gaggles defined on posets and lattices.  On posets is easy, on  
lattices hard.  Chrysafis Hartonas has done some good recent  
work here.  Just google! 
l 
 
 
 



   Some References to “my” work 
 
 1990. "Gaggle Theory, an Abstraction of Galois Connections and 
 Residuation, with Applications to Negation, Implication, and Various  
 Logical Operators," in Logics in AI, ed. J. Van Eijck, LNAI, Springer Verlag.  
   
 1993. "Partial-Gaggles Applied to Substructural Logics," in Substructural  
 Logics, eds. P. Schroeder-Heister and K. Dosen, Oxford Univ. Press. 
    
  1993. "A Kripke Semantics for Linear Logic," (with Gerard Allwein),  
 The Journal of Symbolic Logic.  
  
  1993. "Gaggle Theory Applied to Modal, Intuitionistic, and Relevance Logics,“ 
 in Logik  und Mathematik, eds. I. Max and W. Stelzner, de Gruyter.  
 
  1996. "Generalized Ortho-Negation," in Negation: A Concept in Focus,  
 ed. H. Wansing, de Gruyter. 
 
   2001. Algebraic Methods in Philosophical Logic (with G. Hardgree), OUP.  
 
 2008.  Generalized Galois Logics:  Relational Semantics of Nonclassical  
Logical Calculi (with K. Bimbo), CSLI. 



Thank you!  
 
And as the first speaker let me thank on behalf of all of us 
 the organizers of this special workshop:   
 
Peter Jipsen , Alexander Kurz, and M. Andrew Moshier. 
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