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Introduction

Consider two Heyting algebras:

• >

•a • b

• a ∧ b

•d • e

• ⊥

A

•>

•g • h

• g ∧ h

• k

• ⊥

B
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Introduction (cont.)

B has an interesting property that A does not: If F ,G are prime
filters of B, then so is their join F ∨ G in the lattice of filters of B.

One way of understanding this difference: B is a model of the
Gödel-Dummett logic and A is not, i.e.,

B |= (x → y) ∨ (y → x) = 1, or

B is a subdirect product of linearly-ordered Heyting algebras,
or

B |= x → (y ∨ z) = (x → y) ∨ (x → z).
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Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G ,

then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G ,

so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Consider the last one.

Let F ,G be prime filters of a Heyting algebra H satisfying
x → (y ∨ z) = (x → y) ∨ (x → z).

If a∨ b ∈ F ∨G , then there exist f ∈ G , g ∈ G with f ∧ g ≤ a∨ b.

Hence f ≤ g → (a ∨ b) = (g → a) ∨ (g → b).

F is prime, so g → b ∈ F or g → b ∈ F .

Then either g ∧ (g → a) ∈ F ∨ G or g ∧ (g → b) ∈ F ∨ G , so
either a ∈ F ∨ G or b ∈ F ∨ G .

4 / 28



DR
AF
T
2

Introduction (cont.)

Let A = (A,∧,∨, ·, \, /, e) is a distributive residuated lattice.

Usually the residuated triple ·, \, / is captured on the Priestly dual
of A by

R(F ,G ,H) ⇐⇒ F • G ⊆ H

where
F • G = ↑{f · g : f ∈ F , g ∈ G}

The analysis above applies in this more general setting: If a
residuated lattice satisfies x\(y ∨ z) = (x\y) ∨ (x\z), then for all
prime filters F ,G with R(F ,G ,H) for some H, there is a least H
for which R(F ,G ,H). (i.e., H = F • G )
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Introduction (cont.)

Note: x\(y ∨ z) = x\y ∨ x\z is true in all semilinear residuated
lattices.

Consequently, the analysis above applies to, e.g., MV-algebras,
MTL-algebras, etc.

...But it does not axiomatize semilinearity in this setting.
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Introduction (cont.)

Recall that all residuated lattices satisfy

x(y ∨ z) = xy ∨ xz (·∨)

(x ∨ y)z = xz ∨ yz (∨·)

x\(y ∧ z) = x\y ∧ x\z (\∧)

(x ∧ y)/z = x/z ∧ y/z (∧/)

x/(y ∨ z) = x/y ∧ x/z (/∨)

(x ∨ y)\z = x\z ∧ y\z (∨\)
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Introduction (cont.)

...On the other hand, none of the following generally hold in
residuated lattices:

x(y ∧ z) = xy ∧ xz (·∧)

(x ∧ y)z = xz ∧ yz (∧·)

(x ∧ y)\z = x\z ∨ y\z (∧\)

x/(y ∧ z) = x/y ∨ x/z (/∧)

(x ∨ y)/z = x/z ∨ y/z (∨/)

x\(y ∨ z) = x\y ∨ x\z (\∨)

...But even together they don’t guarantee semilinearity.
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Introduction (cont.)

Motivating Question:

Under what circumstances is the dual of a residuated operation on
lattice functional, and what role do identities like the above play?
When is the dual relation not just functional but total?

Gehrke characterized functionality in the context of some work on
language theory, but there are a lot of unanswered questions.

In order to address some of these unanswered questions, we explore
functionality through the lens of canonical extensions.
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Canonical extensions

Definition:

Let L be a lattice. Recall that the canonical extension of L is a
completion σ : L→ Lδ of L such that

Every element of Lδ is both a join of meets of elements of L
and a meet of joins of elements of L, and

Given any subsets S ,T ⊆ L with
∧
S ≤

∨
T in Lδ, there exist

finite sets S ′ ⊆ S and T ′ ⊆ T such that
∧
S ′ ≤

∨
T ′.

We denote the meet-closure of L in Lδ by K (Lδ), and the
join-closure of L in Lδ by O(Lδ).

Theorem:

The canonical extension of a lattice exists and is unique up to an
isomorphism fixing L.

10 / 28
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Residuation algebras

A residuation algebra is an algebra A = (A,∧,∨, \, /,⊥,>) such
that:

1 (A,∧,∨,⊥,>) is a bounded distributive lattice.

2 \ and / are binary operations on A that preserve finite meets
in their numerators.

3 For all a, b, c ∈ A,

a ≤ c/b ⇐⇒ b ≤ a\c
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Residuation algebras (cont.)

\ and / convert finite joins in their denominators to meets.

Every bounded distributive residuated lattice-ordered groupoid has
a residuation algebra reduct.

But a residuation algebra may not have an operation · with

a ≤ c/b ⇐⇒ a · b ≤ c ⇐⇒ b ≤ a\c

However, such an operation is definable in every complete
residuation algebra.

12 / 28
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Canonical extensions of residuation algebras

The operations \ and / of a residuation algebra A can be extended
to its canonical extension Aδ.

We denote these extensions by \π and /π.

x\πy :=
∨
{x ′\y ′ : x ′, y ′ ∈ A and x ≤ x ′ and y ′ ≤ y}

x/πy :=
∨
{x ′/y ′ : x ′, y ′ ∈ A and x ′ ≤ x and y ≤ y ′}

The canonical extension of a residuation algebra with these
operations is also a (complete) residuation algebra, so
multiplication · may be defined.

13 / 28
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Relational duals

Let A be a residuation algebra.

The relational dual structure of A is

Aδ
+ := (J∞(Aδ),≥,R)

where

1 J∞(Aδ) is the set of completely join-irreducibles of Aδ

2 ≥ is the converse order inherited from Aδ

3 and R is a ternary relation on J∞(Aδ) defined for
x , y , z ∈ J∞(Aδ) by

R(x , y , z) ⇐⇒ x ≤ y · z

14 / 28
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R(x , y , z) ⇐⇒ x ≤ y · z

14 / 28
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Functionality

With the set-up as above, we define:

R to be functional if y · z ∈ J∞(Aδ) ∪ {⊥} for all
y , z ∈ J∞(Aδ). In this case, we say that Aδ

+ is functional

R to be functional and defined everywhere if y · z ∈ J∞(Aδ)
for all y , z ∈ J∞(Aδ). In this case, we say that Aδ

+ is total.
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Characterizing functionality

Theorem (Gehrke 2016, F. and Palmigiano 2018):

The following conditions are equivalent for any residuation algebra
A = (A,∧,∨, \, /⊥,>).

1 The relational structure Aδ
+ is functional.

2 ∀a, b, c ∈ A, ∀x ∈ J∞(Aδ),
x ≤ a⇒ ∃a′[a′ ∈ A & x ≤ a′ & a\(b ∨ c) ≤ (a′\b) ∨ (a′\c)].

3 For all x ∈ J∞(Aδ), the map x\π(−) : O(Aδ)→ O(Aδ) is
∨-preserving, where O(Aδ) denotes the join-closure of A in Aδ.
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Benefits of working in the canonical extension

What about the identity a\(b ∨ c) = (a\b) ∨ (a\c)?

From the
point of view of the canonical extension, the proof that it
guarantees functionality breaks into two parts.

A purely lattice-theoretic piece.

Lemma 1:

Let L be a lattice and k ∈ K (Lδ) be finitely prime. Then
k ∈ J∞(Lδ).

And a piece that relies on the identity.

Lemma 2:

Let A be a residuation algebra such that A satisfies
a\(b ∨ c) ≤ (a\b) ∨ (a\c). Then if x , y ∈ J∞(Aδ), either
x · y = ⊥ or x · y is finitely prime.
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Functionality by identities

Proposition:

Let A be a residuation algebra satisfying
a\(b ∨ c) ≤ (a\b) ∨ (a\c). Then Aδ

+ is functional.

Proof: Let x , y ∈ J∞(Aδ). Then x , y ∈ K (Aδ) by the general
theory of canonical extensions, and also x · y ∈ K (Aδ). By Lemma
2, if x · y 6= ⊥ then x · y is finitely prime. And by Lemma 1, this
proves that x · y ∈ J∞(Aδ).
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Proving Lemma 1

Lemma 1:

Let L be a lattice and k ∈ K (Lδ) be finitely prime. Then
k ∈ J∞(Lδ).

The proof involves the following claim.

Claim: Let L be a lattice. If k ∈ K (Lδ) is finitely prime and
o =

∨
{b ∈ L | b 6≥ k}, then k 6≤ o.

We prove the claim by contradiction.

Suppose
∧
{a ∈ L : k ≤ a} = k ≤ o.

By compactness, there exist finite sets A ⊆ {a ∈ L : k ≤ a} and
B ⊆ {b ∈ L : b 6≥ k} with

a′ =
∧

A ≤
∨

B = b′

19 / 28
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Proving Lemma 1 (cont.)

Then a′ ≥ k , and b′ 6≥ k .

To see why: If this doesn’t hold, then by the primality of k we
would have b ≥ k for some b ∈ B.

Which is a contradiction to the defintion of B.

But then k ≤ a′ ≤ b′, so k ≤ b′.

This is a contradiction, so this proves the claim.
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Proving Lemma 1 (cont.)

To prove the lemma:

It suffices to show that if k =
∨

S for
S ⊆ K (Lδ), then k = s for some s ∈ S .

Set o :=
∨
{a ∈ L | a 6≥ k}. Assume that s < k for all s ∈ S .

Since S ⊆ K (Lδ), for all s ∈ S ,

s =
∧
{a ∈ L | a ≥ s}

For each s ∈ S pick as ∈ L with as ≥ s and as 6≥ k .
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Proving Lemma 1 (cont.)

Then as ≤ o =
∨
{a ∈ L | a 6≥ k} for each s ∈ S .

This implies
∨
{as | s ∈ S} ≤ o.

So:
o ≥

∨
{as | s ∈ S} ≥

∨
S = k

But this contradicts the claim.
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Totality

Say that a residuation algebra A has no zero-divisors if for every
x , y ∈ J∞(Aδ), x · y = ⊥ implies x = ⊥ or y = ⊥.

Corollary:

Let A be a residuation algebra satisfying a\(b∨ c) ≤ (a\b)∨ (a\c).
If A has no zero-divisors, then Aδ

+ is total.
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Functionality is not equational

Proposition:

There is no universal first-order condition in the language of
residuation algebras that characterizes functionality. In particular,
there is no equational condition that suffices.

Proof: Take the group of integers Z3.

Its residuated complex algebra is Z = (P(Z3),∩,∪, ·, \, /), where

A · B = {a + b : a ∈ A, b ∈ B}

A\B = {c : A · {c} ⊆ B},

A/B = {c : {c} · B ⊆ A}.

24 / 28
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Functionality is not equational (cont.)

The lattice reduct of Z is a finite Boolean lattice.

• Z3

•{0, 1} • {1, 2}

• {1}

•{0, 2}

•{0} • {2}

• ∅

So its prime filters are given by the atoms {0}, {1}, {2}.

And these are closed under •

25 / 28
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Functionality is not equational (cont.)

Subalgebras don’t inherit this property.

{∅, {0}, {1, 2},Z3} is the universe of a subalgebra of Z.

• Z3

•{0} • {1, 2}

• ∅

And ↑{1, 2} is prime in this subalgebra.

But ↑{1, 2} • ↑{1, 2} = {Z3}, which is not prime.
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Future and ongoing work

The modular account offered by the canonical extension approach
implicates an important question: What about residuated lattices
whose lattice reduct is non-distributive?

The proof offered above may offer clues, because the
lattice-theoretic component of it does not depend on distributivity.

A question due to Gehrke: Is there any first-order condition in the
language of residuation algebras that characterizes functionality?

Do residuation algebras whose duals are functional generate the
variety of residuation algebras?
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Thank you!

Thank you!
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