
Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 1 / 44

Is there a useful duality for residuated lattices?

Nick Galatos
University of Denver

ngalatos@du.edu

September, 2018



Substructural logics

Substructural logics

Algebraic semantics

FL

Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 2 / 44



Algebraic semantics
Substructural logics

Algebraic semantics

FL

Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 3 / 44

A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,
■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

a · b ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

■ Lattice-ordered groups: division is multiplication by inverse

■ Heyting algebras: x · y = x ∧ y

■ MV-algebras: x · y = y · x, x ∨ y = (x→ y) → y.

■ Relation algebras: multiplication is composition

■ Ideals of rings: usual multiplication of ideals

RL: the variety of all residuated lattices
CRL: the variety of residuated lattices with coommutative
multiplication
DRL: the variety of residuated lattices with distributive lattices



FL
Substructural logics

Algebraic semantics

FL

Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 4 / 44

x⇒ a y◦a◦z⇒ c
y◦x◦z⇒ c (cut) a⇒ a (Id)

y◦a◦z⇒ c

y◦a ∧ b◦z⇒ c
(∧Lℓ)

y◦b◦z⇒ c

y◦a ∧ b◦z⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

y◦a◦z⇒ c y◦b◦z⇒ c

y◦a ∨ b◦z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

x⇒ a y◦b◦z⇒ c

y◦x ◦ (a\b)◦z⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a y◦b◦z⇒ c

y◦(b/a) ◦ x◦z⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

y◦a ◦ b◦z⇒ c

y◦a · b◦z⇒ c
(·L)

x⇒ a y⇒ b

x ◦ y⇒ a · b
(·R)

y ◦ z⇒ a

y◦1◦z⇒ a
(1L)

ε⇒ 1
(1R)

where a, b, c ∈ Fm, x, y, z ∈ Fm∗.
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(C) [x→ (y → z)] → [y → (x→ z)] (xy = yx)
(K) y → (x→ y) (x ≤ 1)
(W) [x→ (x→ y)] → (x→ y) (x ≤ x2)
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(C) [x→ (y → z)] → [y → (x→ z)] (xy = yx)
(K) y → (x→ y) (x ≤ 1)
(W) [x→ (x→ y)] → (x→ y) (x ≤ x2)

Examples of substructural logics include

■ classical: (C)+(K)+(W)+ ¬¬φ = φ (DN)

■ intuitionistic (Brouwer, Heyting): (C)+(K)+(W)

■ many-valued ( Lukasiewicz): (C)+(K)+ (φ→ ψ) → ψ = φ ∨ ψ

■ MTL (Esteva, Godo): (C)+(K)+ (φ→ ψ) ∨ (ψ → φ)

■ basic (Hajek): MTL+ φ(φ→ ψ) = φ ∧ ψ

■ relevance (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN)

■ (MA)linear logic (Girard): (C)
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a b c

1

a b c

0

cba

For general (non-distributive) lattices, the poset of join irreducibles is
not enough to recover the lattice.
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a b c

1

a b c

0

cba

For general (non-distributive) lattices, the poset of join irreducibles is
not enough to recover the lattice. We also need the meet irreducibles;
we denote their poset by M(L).
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a b c

1

a b c

0

cba

For general (non-distributive) lattices, the poset of join irreducibles is
not enough to recover the lattice. We also need the meet irreducibles;
we denote their poset by M(L). For every distributive lattice M(L)
is isomorphic to J(L). Note ↑ a∪ ↓ c = ↑ b∪ ↓ a = ↑ c∪ ↓ d = L.
Splitting pairs: (a, c), (b, a), (c, d).

d c

a b

c

ba

d

ca
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c′ b′ a′

a b c

c′ b′ a′

a b c

⊑ a′ b′ c′

a × ×
b × ×
c × ×

1

a b c

0

a b c

a b c

⊑ a′ b′ c′

a ×
b ×
c ×
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d c

a b

a d c

a b c

⊑ a d c

a × ×
b × ×
c ×
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d c

a b

a d c

a b c

⊑ a d c

a × ×
b × ×
c ×

We calculate {z}⊳ for all upper elements z:
{a}⊳ = {a}, {d}⊳ = {a, b}, {c}⊳ = {b, c}.
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d c

a b

a d c

a b c

⊑ a d c

a × ×
b × ×
c ×

We calculate {z}⊳ for all upper elements z:
{a}⊳ = {a}, {d}⊳ = {a, b}, {c}⊳ = {b, c}.

These correspond to the meet generators of the original lattice and
the lattice is obtained by intersections of these sets.
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d c

a b

a d c

a b c

⊑ a d c

a × ×
b × ×
c ×

We calculate {z}⊳ for all upper elements z:
{a}⊳ = {a}, {d}⊳ = {a, b}, {c}⊳ = {b, c}.

These correspond to the meet generators of the original lattice and
the lattice is obtained by intersections of these sets. In general we
obtain the Dedekind-McNeille completion of the original lattice.
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A lattice frame is a structure W = (W,⊑,W ′) where W and W ′ are
sets and ⊑ is a binary relation from W to W ′.
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A lattice frame is a structure W = (W,⊑,W ′) where W and W ′ are
sets and ⊑ is a binary relation from W to W ′.

For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }
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A lattice frame is a structure W = (W,⊑,W ′) where W and W ′ are
sets and ⊑ is a binary relation from W to W ′.

For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }

We define γ(X) = X⊲⊳.
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A lattice frame is a structure W = (W,⊑,W ′) where W and W ′ are
sets and ⊑ is a binary relation from W to W ′.

For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }

We define γ(X) = X⊲⊳.

Lemma. If W is a lattice frame then the Galois/dual algebra
W

+ = (γ[P(W )],∩,∪γ) is a complete lattice.
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A lattice frame is a structure W = (W,⊑,W ′) where W and W ′ are
sets and ⊑ is a binary relation from W to W ′.

For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }

We define γ(X) = X⊲⊳.

Lemma. If W is a lattice frame then the Galois/dual algebra
W

+ = (γ[P(W )],∩,∪γ) is a complete lattice.

Every γ-closed set is an intersection of basic closed sets: {z}⊳,
where z ∈W ′.
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A lattice frame is a structure W = (W,⊑,W ′) where W and W ′ are
sets and ⊑ is a binary relation from W to W ′.

For X ⊆W and Y ⊆W ′ we define

X⊲ = {b ∈W ′ : x⊑b, for all x ∈ X}
Y ⊳ = {a ∈W : a⊑y, for all y ∈ Y }

We define γ(X) = X⊲⊳.

Lemma. If W is a lattice frame then the Galois/dual algebra
W

+ = (γ[P(W )],∩,∪γ) is a complete lattice.

Every γ-closed set is an intersection of basic closed sets: {z}⊳,
where z ∈W ′.

If W satisfies the condition (COM), then W
+ is a chain.

x⊑z y⊑w

x⊑w OR y⊑z
(COM)
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra,
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra, S maps to W and W ′
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra, S maps to W and W ′ and the
conditions are satisfied for all a, b ∈ S, x ∈W and z ∈W ′.

x⊑a a⊑z

x⊑z
(CUT)

a⊑a
(Id)

a⊑z

a ∧ b⊑z
(∧Lℓ)

b⊑z

a ∧ b⊑z
(∧Lr)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)

Corollary. The map q : S → W
+, q(a) = {a}⊳ is a

homomorphism: q(a ∧B b) = q(a) ∧W+ q(b) and
q(a ∨B b) = q(a) ∨W+ q(b).
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra, S maps to W and W ′ and the
conditions are satisfied for all a, b ∈ S, x ∈W and z ∈W ′.

x⊑a a⊑z

x⊑z
(CUT)

a⊑a
(Id)

a⊑z

a ∧ b⊑z
(∧Lℓ)

b⊑z

a ∧ b⊑z
(∧Lr)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)

Corollary. The map q : S → W
+, q(a) = {a}⊳ is a

homomorphism: q(a ∧B b) = q(a) ∧W+ q(b) and
q(a ∨B b) = q(a) ∨W+ q(b). If ⊑ is antisymmetric on S, then q is
injective.
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra, S maps to W and W ′ and the
conditions are satisfied for all a, b ∈ S, x ∈W and z ∈W ′.

x⊑a a⊑z

x⊑z
(CUT)

a⊑a
(Id)

a⊑z

a ∧ b⊑z
(∧Lℓ)

b⊑z

a ∧ b⊑z
(∧Lr)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)

Corollary. The map q : S → W
+, q(a) = {a}⊳ is a

homomorphism: q(a ∧B b) = q(a) ∧W+ q(b) and
q(a ∨B b) = q(a) ∨W+ q(b). If ⊑ is antisymmetric on S, then q is
injective.

Application (DM-completion/embedding): Given a lattice L,
WL = (L,≤, L) is a lattice frame
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra, S maps to W and W ′ and the
conditions are satisfied for all a, b ∈ S, x ∈W and z ∈W ′.

x⊑a a⊑z

x⊑z
(CUT)

a⊑a
(Id)

a⊑z

a ∧ b⊑z
(∧Lℓ)

b⊑z

a ∧ b⊑z
(∧Lr)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)

Corollary. The map q : S → W
+, q(a) = {a}⊳ is a

homomorphism: q(a ∧B b) = q(a) ∧W+ q(b) and
q(a ∨B b) = q(a) ∨W+ q(b). If ⊑ is antisymmetric on S, then q is
injective.

Application (DM-completion/embedding): Given a lattice L,
WL = (L,≤, L) is a lattice frame and the pair (WL,L) is a Genzen
lattice frame.
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A Gentzen lattice frame is a pair (W,S), where W is a lattice
frame, S = (S,∧,∨) is an algebra, S maps to W and W ′ and the
conditions are satisfied for all a, b ∈ S, x ∈W and z ∈W ′.

x⊑a a⊑z

x⊑z
(CUT)

a⊑a
(Id)

a⊑z

a ∧ b⊑z
(∧Lℓ)

b⊑z

a ∧ b⊑z
(∧Lr)

x⊑a x⊑b

x⊑a ∧ b
(∧R)

a⊑z b⊑z

a ∨ b⊑z
(∨L)

x⊑a

x⊑a ∨ b
(∨Rℓ)

x⊑b

x⊑a ∨ b
(∨Rr)

Corollary. The map q : S → W
+, q(a) = {a}⊳ is a

homomorphism: q(a ∧B b) = q(a) ∧W+ q(b) and
q(a ∨B b) = q(a) ∨W+ q(b). If ⊑ is antisymmetric on S, then q is
injective.

Application (DM-completion/embedding): Given a lattice L,
WL = (L,≤, L) is a lattice frame and the pair (WL,L) is a Genzen
lattice frame. W

+

L
is the Dedekind-MacNeille completion of L and

q : L → W
+

L
is an embedding.
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a ≤ a

a ≤ b b ≤ a

a = b
a ≤ b b ≤ c

a ≤ c
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a ≤ a

a ≤ b b ≤ a

a = b
a ≤ b b ≤ c

a ≤ c

a ≤ c

a ∧ b ≤ c

b ≤ c

a ∧ b ≤ c

c ≤ a c ≤ b

c ≤ a ∧ b
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a ≤ a

a ≤ b b ≤ a

a = b
a ≤ b b ≤ c

a ≤ c

a ≤ c

a ∧ b ≤ c

b ≤ c

a ∧ b ≤ c

c ≤ a c ≤ b

c ≤ a ∧ b

c ≤ a

c ≤ a ∨ b
c ≤ b

c ≤ a ∨ b
a ≤ c b ≤ c

a ∨ b ≤ c
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a ≤ a

a ≤ b b ≤ a

a = b
a ≤ b b ≤ c

a ≤ c

a ≤ c

a ∧ b ≤ c

b ≤ c

a ∧ b ≤ c

c ≤ a c ≤ b

c ≤ a ∧ b

c ≤ a

c ≤ a ∨ b
c ≤ b

c ≤ a ∨ b
a ≤ c b ≤ c

a ∨ b ≤ c

Theorem. (Cut elimination) Lat and Lat
cf (Lat without cut)

prove the same sequents.
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a ≤ a

a ≤ b b ≤ a

a = b
a ≤ b b ≤ c

a ≤ c

a ≤ c

a ∧ b ≤ c

b ≤ c

a ∧ b ≤ c

c ≤ a c ≤ b

c ≤ a ∧ b

c ≤ a

c ≤ a ∨ b
c ≤ b
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Theorem. (Cut elimination) Lat and Lat
cf (Lat without cut)

prove the same sequents. We consider the lattice frame W, where
W = Fm, W ′ = Fm and a⊑b iff a ≤ b is provable in Lat

cf .
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Theorem. (Cut elimination) Lat and Lat
cf (Lat without cut)

prove the same sequents. We consider the lattice frame W, where
W = Fm, W ′ = Fm and a⊑b iff a ≤ b is provable in Lat

cf . We will
show that if a sequent holds in all lattices then it is provable Lat

cf .
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Theorem. (Cut elimination) Lat and Lat
cf (Lat without cut)

prove the same sequents. We consider the lattice frame W, where
W = Fm, W ′ = Fm and a⊑b iff a ≤ b is provable in Lat

cf . We will
show that if a sequent holds in all lattices then it is provable Lat

cf .

Lemma. For all a, b ∈ S, then a ∧B b ∈ q(a) ∧W+ q(b) ⊆ q(a ∧B b)
and a ∨B b ∈ q(a) ∨W+ q(b) ⊆ q(a ∨B b). (W,Fm) is cf-Gentzen.
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Theorem. (Cut elimination) Lat and Lat
cf (Lat without cut)

prove the same sequents. We consider the lattice frame W, where
W = Fm, W ′ = Fm and a⊑b iff a ≤ b is provable in Lat

cf . We will
show that if a sequent holds in all lattices then it is provable Lat

cf .

Lemma. For all a, b ∈ S, then a ∧B b ∈ q(a) ∧W+ q(b) ⊆ q(a ∧B b)
and a ∨B b ∈ q(a) ∨W+ q(b) ⊆ q(a ∨B b). (W,Fm) is cf-Gentzen.

Corollary. The homomorphism h : Fm → W
+ extending the

variable assignment p 7→ q(p) satisfies a ∈ h(a) ⊆ q(a).

So, if W+ |= a ≤ b, then a ∈ h(a) ⊆ h(b) ⊆ q(b) = {b}⊳, so a⊑b.
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A residuated frame is a structure W = (W, ◦, ε,⊑,W ′) where

■ (W,⊑,W ′) is a lattice frame
■ (W, ◦, ε) is a monoid
■ there exist  and � such that for all x, y ∈W and z ∈W ′

(x ◦ y)⊑z ⇔ y⊑(x  z) ⇔ x⊑(z � y).
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A residuated frame is a structure W = (W, ◦, ε,⊑,W ′) where

■ (W,⊑,W ′) is a lattice frame
■ (W, ◦, ε) is a monoid
■ there exist  and � such that for all x, y ∈W and z ∈W ′

(x ◦ y)⊑z ⇔ y⊑(x  z) ⇔ x⊑(z � y).

Corollary. If W is a residuated frame then the Galois/dual algebra
W

+ = (γ[P(W )],∩,∪γ , ◦γ , γ(1), \, /) is a residuated lattice, where

X ◦ Y = {x ◦ y : x ∈ X, y ∈ Y },
X\Y = {z : X ◦ {z} ⊆ Y }
Y/X = {z : {z} ◦X ⊆ Y }.
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Consider the equation ε:

xyw ≤ x2 ∨ yx ∨ xw3y2
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Consider the equation ε:

xyw ≤ x2 ∨ yx ∨ xw3y2

x2 ≤ z yx ≤ z xw3y2 ≤ z

xyw ≤ z

x ◦ x⊑z y ◦ x⊑z x ◦ w ◦ w ◦ w ◦ y ◦ y N z

x ◦ y ◦ w⊑z
R(ε)

Theorem: If W satisfies R(ε) iff W
+ satisfies ε.

Lemma. Every equation over {∨, ·, 1} is equivalent to a conjunction
of simple equations: t0 ≤ t1 ∨ · · · ∨ tn, where ti are {·, 1}-terms and
t0 is linear.
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If we have a common subset S of W and W ′ that supports a (partial)
algebra S = (S,∧,∨, ·, \, /, 1), and for a, b, c ∈ S, x, y ∈W , z ∈W ′,
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If we have a common subset S of W and W ′ that supports a (partial)
algebra S = (S,∧,∨, ·, \, /, 1), and for a, b, c ∈ S, x, y ∈W , z ∈W ′,
then we call (W,S) a Gentzen frame and we call W an S-frame.
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(/L)

x⊑b � a

x⊑b/a
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If we have a common subset S of W and W ′ that supports a (partial)
algebra S = (S,∧,∨, ·, \, /, 1), and for a, b, c ∈ S, x, y ∈W , z ∈W ′,
then we call (W,S) a Gentzen frame and we call W an S-frame.
Again, q : S → W

+ is a homomorphism (in the full signature).
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To a residuated lattice A, we associate the Gentzen frame (WA,A),
where WA = (A, ·, 1,≤, A).
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To a residuated lattice A, we associate the Gentzen frame (WA,A),
where WA = (A, ·, 1,≤, A). We define x z = x\z and z�x = z/x.

Theorem. The map x 7→ x⊳ is an embedding of A into W
+

A
.
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To a residuated lattice A, we associate the Gentzen frame (WA,A),
where WA = (A, ·, 1,≤, A). We define x z = x\z and z�x = z/x.

Theorem. The map x 7→ x⊳ is an embedding of A into W
+

A
.

Corollary. The variety of residuated lattices is closed under
DM-completions.
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To a partially-odrered semigroup A = (A,≤, ·),
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To a partially-odrered semigroup A = (A,≤, ·), we associate the
Gentzen frame (WA,A), where WA = (Aε, ·,⊑, Aε ×A×Aε),
Aε = A ∪ {ε} for ε 6∈ A, where a ◦ b = ab for a, b ∈ A and
ε ◦ a = a ◦ ε = a.
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Aε = A ∪ {ε} for ε 6∈ A, where a ◦ b = ab for a, b ∈ A and
ε ◦ a = a ◦ ε = a. Also,

x⊑(y, a, z) iff y ◦ x ◦ z ≤ a.
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Gentzen frame (WA,A), where WA = (Aε, ·,⊑, Aε ×A×Aε),
Aε = A ∪ {ε} for ε 6∈ A, where a ◦ b = ab for a, b ∈ A and
ε ◦ a = a ◦ ε = a. Also,

x⊑(y, a, z) iff y ◦ x ◦ z ≤ a.

This is an A-frame, where the maps from A are a 7→ a and
a 7→ (ε, a, ε).
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Aε = A ∪ {ε} for ε 6∈ A, where a ◦ b = ab for a, b ∈ A and
ε ◦ a = a ◦ ε = a. Also,

x⊑(y, a, z) iff y ◦ x ◦ z ≤ a.

This is an A-frame, where the maps from A are a 7→ a and
a 7→ (ε, a, ε).

Theorem. The map x 7→ x⊳ is an embedding of A into W
+

A
. If A

has a multiplicative unit then the embeding preserves it. The
embedding preserves exising joins

∨
X for which

y(
∨
X)z =

∨
(yxiz) for all y, z ∈ A. The embedding preserves all

existing residuals.
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Given a frame W = (W, ◦, ε,⊑,W ′) which might not be residuated,

we can construct a residuated frame W̃ = (W, ◦, ε, ⊑̃, W̃ ′) out of it.
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We have x ◦ w ◦ y⊑z iff w⊑x  z � y
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we can construct a residuated frame W̃ = (W, ◦, ε, ⊑̃, W̃ ′) out of it.

We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′
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Given a frame W = (W, ◦, ε,⊑,W ′) which might not be residuated,

we can construct a residuated frame W̃ = (W, ◦, ε, ⊑̃, W̃ ′) out of it.

We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′

So we define: w⊑̃(x, z, y) iff x ◦ w ◦ y⊑z.
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Given a frame W = (W, ◦, ε,⊑,W ′) which might not be residuated,

we can construct a residuated frame W̃ = (W, ◦, ε, ⊑̃, W̃ ′) out of it.

We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′

So we define: w⊑̃(x, z, y) iff x ◦ w ◦ y⊑z.

We now check if the new frame is residuated:

w1 ◦ w2⊑̃(x, z, y) iff x ◦ w1 ◦ w2 ◦ y⊑z

iff w1⊑̃(x, z, w2 ◦ y)
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Given a frame W = (W, ◦, ε,⊑,W ′) which might not be residuated,

we can construct a residuated frame W̃ = (W, ◦, ε, ⊑̃, W̃ ′) out of it.

We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′

So we define: w⊑̃(x, z, y) iff x ◦ w ◦ y⊑z.

We now check if the new frame is residuated:
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Given a frame W = (W, ◦, ε,⊑,W ′) which might not be residuated,
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We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′

So we define: w⊑̃(x, z, y) iff x ◦ w ◦ y⊑z.
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We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′

So we define: w⊑̃(x, z, y) iff x ◦ w ◦ y⊑z.

We now check if the new frame is residuated:
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Given a frame W = (W, ◦, ε,⊑,W ′) which might not be residuated,

we can construct a residuated frame W̃ = (W, ◦, ε, ⊑̃, W̃ ′) out of it.

We have x ◦ w ◦ y⊑z iff w⊑x  z � y

:= (x, z, y) ∈W ×W ′ ×W =: W̃ ′

So we define: w⊑̃(x, z, y) iff x ◦ w ◦ y⊑z.

We now check if the new frame is residuated:

w1 ◦ w2⊑̃(x, z, y) iff x ◦ w1 ◦ w2 ◦ y⊑z

iff w1⊑̃(x, z, w2 ◦ y) = (x, z, y) � w2

iff w2⊑̃(x ◦ w1, z) = w1  (x, z, y)

Often we will write ⊑ for the extension ⊑̃.
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To a partially-odrered semigroup A = (A,≤, ·), we associate the
Gentzen pre-frame (WA,A), where WA = (Aε, ·,⊑, A),
Aε = A ∪ {ε} for ε 6∈ A, where a ◦ b = ab for a, b ∈ A and
ε ◦ a = a ◦ ε = a. Also,

x⊑a iff x ≤ a.

This is an A-frame, where the maps from A are a 7→ a and
a 7→ (ε, a, ε).
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To a partially-odrered semigroup A = (A,≤, ·), we associate the
Gentzen pre-frame (WA,A), where WA = (Aε, ·,⊑, A),
Aε = A ∪ {ε} for ε 6∈ A, where a ◦ b = ab for a, b ∈ A and
ε ◦ a = a ◦ ε = a. Also,

x⊑a iff x ≤ a.

This is an A-frame, where the maps from A are a 7→ a and
a 7→ (ε, a, ε).

Theorem. The map x 7→ x⊳ is an embedding of A into W
+

A
. If A

has a multiplicative unit then the embeding preserves it. The
embedding preserves exising joins

∨
X for which

y(
∨
X)z =

∨
(yxiz) for all y, z ∈ A. The embedding preserves all

existing residuals.
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = Fm, and
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = Fm, and
■ x N a iff ⊢FL x ⇒ a.



Examples of frames: FL
Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations

Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL

FL

FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation

Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 21 / 44

Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = Fm, and
■ x N a iff ⊢FL x ⇒ a.

It is easy to see that (WFL,Fm) is a Gentzen frame. For example,
consider

x⊑a b⊑z

a\b⊑x  z
(\L)

Where a, b, c ∈ Fm, x, u, v ∈W = Fm∗, z ∈W × Fm×W .
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = Fm, and
■ x N a iff ⊢FL x ⇒ a.

It is easy to see that (WFL,Fm) is a Gentzen frame. For example,
consider

x⊑a b⊑z

a\b⊑x  z
(\L)

Where a, b, c ∈ Fm, x, u, v ∈W = Fm∗, z ∈W × Fm×W . The
rule can be rewritten as

x⊑a b⊑z

x ◦ (a\b)⊑z
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = Fm, and
■ x N a iff ⊢FL x ⇒ a.

It is easy to see that (WFL,Fm) is a Gentzen frame. For example,
consider

x⊑a b⊑z

a\b⊑x  z
(\L)

Where a, b, c ∈ Fm, x, u, v ∈W = Fm∗, z ∈W × Fm×W . The
rule can be rewritten as

x⊑a b⊑z

x ◦ (a\b)⊑z

x⊑a b⊑(v, c, u)

x ◦ (a\b)⊑(v, c, u)
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Based on the Gentzen system FL, we define the residuated frame
WFL based on the preframe:

■ (W, ◦, ε) is the free monoid over the set Fm of all formulas
■ W ′ = Fm, and
■ x N a iff ⊢FL x ⇒ a.

It is easy to see that (WFL,Fm) is a Gentzen frame. For example,
consider

x⊑a b⊑z

a\b⊑x  z
(\L)

Where a, b, c ∈ Fm, x, u, v ∈W = Fm∗, z ∈W × Fm×W . The
rule can be rewritten as

x⊑a b⊑z

x ◦ (a\b)⊑z

x⊑a b⊑(v, c, u)

x ◦ (a\b)⊑(v, c, u)

x⊑a v ◦ b ◦ u⊑c

v ◦ x ◦ (a\b) ◦ u⊑c
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x⇒ a y◦a◦z⇒ c
y◦x◦z⇒ c (cut) a⇒ a (Id)

y◦a◦z⇒ c

y◦a ∧ b◦z⇒ c
(∧Lℓ)

y◦b◦z⇒ c

y◦a ∧ b◦z⇒ c
(∧Lr) x⇒ a x⇒ b

x⇒ a ∧ b
(∧R)

y◦a◦z⇒ c y◦b◦z⇒ c

y◦a ∨ b◦z⇒ c
(∨L) x⇒ a

x⇒ a ∨ b
(∨Rℓ) x⇒ b

x⇒ a ∨ b
(∨Rr)

x⇒ a y◦b◦z⇒ c

y◦x ◦ (a\b)◦z⇒ c
(\L) a ◦ x⇒ b

x⇒ a\b
(\R)

x⇒ a y◦b◦z⇒ c

y◦(b/a) ◦ x◦z⇒ c
(/L) x ◦ a⇒ b

x⇒ b/a
(/R)

y◦a ◦ b◦z⇒ c

y◦a · b◦z⇒ c
(·L)

x⇒ a y⇒ b

x ◦ y⇒ a · b
(·R)

y ◦ z⇒ a

y◦1◦z⇒ a
(1L)

ε⇒ 1
(1R)

where a, b, c ∈ Fm, x, y, z ∈ Fm∗.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define s↑ the set of pairs
(w, (x, c, y)) in W ×W ′ such that x,w, y ⇒ c is one of those
sequents.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define s↑ the set of pairs
(w, (x, c, y)) in W ×W ′ such that x,w, y ⇒ c is one of those
sequents.

We also define a new relation ⊑s = ⊑̃ ∪ (s↑)c.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define s↑ the set of pairs
(w, (x, c, y)) in W ×W ′ such that x,w, y ⇒ c is one of those
sequents.

We also define a new relation ⊑s = ⊑̃ ∪ (s↑)c. The resulting frame
Ws is residuated.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define s↑ the set of pairs
(w, (x, c, y)) in W ×W ′ such that x,w, y ⇒ c is one of those
sequents.

We also define a new relation ⊑s = ⊑̃ ∪ (s↑)c. The resulting frame
Ws is residuated.

Using the finiteness of (⊑s)
c we get that W

+
s is finite.



Finite model property
Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations

Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL

FL

FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation

Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 23 / 44

Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define s↑ the set of pairs
(w, (x, c, y)) in W ×W ′ such that x,w, y ⇒ c is one of those
sequents.

We also define a new relation ⊑s = ⊑̃ ∪ (s↑)c. The resulting frame
Ws is residuated.

Using the finiteness of (⊑s)
c we get that W

+
s is finite. Moreover

(Ws,Fm) is a cut-free Gentzen frame and s is not valid in W
+
s .

Corollary. The system FL has the finite model property. The same
holds for reducing simple extensions.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame WFL based on x⊑a iff x ⇒ a is
provable in FL

cf .

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define s↑ the set of pairs
(w, (x, c, y)) in W ×W ′ such that x,w, y ⇒ c is one of those
sequents.

We also define a new relation ⊑s = ⊑̃ ∪ (s↑)c. The resulting frame
Ws is residuated.

Using the finiteness of (⊑s)
c we get that W

+
s is finite. Moreover

(Ws,Fm) is a cut-free Gentzen frame and s is not valid in W
+
s .

Corollary. The system FL has the finite model property. The same
holds for reducing simple extensions. The corresponding varieties of
residuated lattices are generated by their finite members.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe

■ (W, ·, 1) is the submonoid of A generated by B,
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe

■ (W, ·, 1) is the submonoid of A generated by B,
■ W ′ = B, and
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe

■ (W, ·, 1) is the submonoid of A generated by B,
■ W ′ = B, and
■ x⊑b by x ≤A b.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe

■ (W, ·, 1) is the submonoid of A generated by B,
■ W ′ = B, and
■ x⊑b by x ≤A b.

Theorem. Every variety of integral (alt., by commutative and
knotted) RL’s axiomatized by equations over {∨, ·, 1} has the FEP.

■ q : B → W
+ is an embedding

■ W
+ ∈ V

■ W
+ is finite
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe

■ (W, ·, 1) is the submonoid of A generated by B,
■ W ′ = B, and
■ x⊑b by x ≤A b.

Theorem. Every variety of integral (alt., by commutative and
knotted) RL’s axiomatized by equations over {∨, ·, 1} has the FEP.

■ q : B → W
+ is an embedding

■ W
+ ∈ V

■ W
+ is finite

Corollary. These varieties are generated as quasivarieties by their
finite members.
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A class of algebras K has the finite embeddability property (FEP) if
for every A ∈ K, every finite partial subalgebra B of A can be
(partially) embedded in a finite D ∈ K.

We define W based on the preframe

■ (W, ·, 1) is the submonoid of A generated by B,
■ W ′ = B, and
■ x⊑b by x ≤A b.

Theorem. Every variety of integral (alt., by commutative and
knotted) RL’s axiomatized by equations over {∨, ·, 1} has the FEP.

■ q : B → W
+ is an embedding

■ W
+ ∈ V

■ W
+ is finite

Corollary. These varieties are generated as quasivarieties by their
finite members. The corresponding logics have the strong finite
model property.
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),

and also given relations

⊑BC′ ⊆ B × C ′ and ⊑CB′ ⊆ C ×B′,
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),

and also given relations

⊑BC′ ⊆ B × C ′ and ⊑CB′ ⊆ C ×B′,

we define the relation ⊑ from B ∪ C to B′ ∪ C ′ as
⊑B ∪ ⊑C ∪ ⊑BC′ ∪ ⊑CB′ .
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),

and also given relations

⊑BC′ ⊆ B × C ′ and ⊑CB′ ⊆ C ×B′,

we define the relation ⊑ from B ∪ C to B′ ∪ C ′ as
⊑B ∪ ⊑C ∪ ⊑BC′ ∪ ⊑CB′ . We consider BC, the free commutative
monoid generated by B ∪C, where (bc) ◦ (b′c′) = (b ◦ b′)(c ◦ c′),
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),

and also given relations

⊑BC′ ⊆ B × C ′ and ⊑CB′ ⊆ C ×B′,

we define the relation ⊑ from B ∪ C to B′ ∪ C ′ as
⊑B ∪ ⊑C ∪ ⊑BC′ ∪ ⊑CB′ . We consider BC, the free commutative
monoid generated by B ∪C, where (bc) ◦ (b′c′) = (b ◦ b′)(c ◦ c′), and
we extend ⊑ from BC to B′ ∪ C ′:

bc⊑b′ iff c⊑b  b′
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),

and also given relations

⊑BC′ ⊆ B × C ′ and ⊑CB′ ⊆ C ×B′,

we define the relation ⊑ from B ∪ C to B′ ∪ C ′ as
⊑B ∪ ⊑C ∪ ⊑BC′ ∪ ⊑CB′ . We consider BC, the free commutative
monoid generated by B ∪C, where (bc) ◦ (b′c′) = (b ◦ b′)(c ◦ c′), and
we extend ⊑ from BC to B′ ∪ C ′:

bc⊑b′ iff c⊑b  b′ and bc⊑c′ iff b⊑c  c′.

The resulting residuated frame obtained is denoted by WB ⋆WC .
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Given two commutative residuated frames

WB = (B, ◦, ε,⊑B , B
′) and WC = (C, ◦, ε,⊑C , C

′),

and also given relations

⊑BC′ ⊆ B × C ′ and ⊑CB′ ⊆ C ×B′,

we define the relation ⊑ from B ∪ C to B′ ∪ C ′ as
⊑B ∪ ⊑C ∪ ⊑BC′ ∪ ⊑CB′ . We consider BC, the free commutative
monoid generated by B ∪C, where (bc) ◦ (b′c′) = (b ◦ b′)(c ◦ c′), and
we extend ⊑ from BC to B′ ∪ C ′:

bc⊑b′ iff c⊑b  b′ and bc⊑c′ iff b⊑c  c′.

The resulting residuated frame obtained is denoted by WB ⋆WC .

We will give applications of this construction in proving:

■ Amagamation (and related properties)
■ Interpolation
■ Densification
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]

Theorem. CRL has the AP; the same holds for its subvarieties CRLn

axiomatized by x ≤ xn.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]

Theorem. CRL has the AP; the same holds for its subvarieties CRLn

axiomatized by x ≤ xn.

We consider the frames WB = (B, ·, 1,≤, B) and
WC = (C, ·, 1,≤, C), and as before we construct the residuated
frame W = WB ⋆WC . For that we need

⊑BC := ⊑B ◦ fB ◦ (fC)
−1 ◦⊑C and ⊑CB = ⊑C ◦ fC ◦ (fB)

−1 ◦⊑B .
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]

Theorem. CRL has the AP; the same holds for its subvarieties CRLn

axiomatized by x ≤ xn.

We consider the frames WB = (B, ·, 1,≤, B) and
WC = (C, ·, 1,≤, C), and as before we construct the residuated
frame W = WB ⋆WC . For that we need

⊑BC := ⊑B ◦ fB ◦ (fC)
−1 ◦⊑C and ⊑CB = ⊑C ◦ fC ◦ (fB)

−1 ◦⊑B .

We verify that W satisfies the rules associated with x ≤ xn. So,
W

+ ∈ CRLn.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]

Theorem. CRL has the AP; the same holds for its subvarieties CRLn

axiomatized by x ≤ xn.

We consider the frames WB = (B, ·, 1,≤, B) and
WC = (C, ·, 1,≤, C), and as before we construct the residuated
frame W = WB ⋆WC . For that we need

⊑BC := ⊑B ◦ fB ◦ (fC)
−1 ◦⊑C and ⊑CB = ⊑C ◦ fC ◦ (fB)

−1 ◦⊑B .

We verify that W satisfies the rules associated with x ≤ xn. So,
W

+ ∈ CRLn.

By taking the partial algebra B ∪C, we can prove that (W,B ∪C)
is a Gentzen frame.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]

Theorem. CRL has the AP; the same holds for its subvarieties CRLn

axiomatized by x ≤ xn.

We consider the frames WB = (B, ·, 1,≤, B) and
WC = (C, ·, 1,≤, C), and as before we construct the residuated
frame W = WB ⋆WC . For that we need

⊑BC := ⊑B ◦ fB ◦ (fC)
−1 ◦⊑C and ⊑CB = ⊑C ◦ fC ◦ (fB)

−1 ◦⊑B .

We verify that W satisfies the rules associated with x ≤ xn. So,
W

+ ∈ CRLn.

By taking the partial algebra B ∪C, we can prove that (W,B ∪C)
is a Gentzen frame. So there is an homomorphism q : B∪C → W

+,
which yields f ′B : B → W

+ and f ′C : C → W
+.
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A class K of similar algebras has the amalgamation property (AP), if
for all A,B,C ∈ K and embeddings fB : A → B and fC : A → C,
there is a D ∈ K and embeddings f ′B : B → D and f ′C : C → D

such that f ′B ◦ fB = f ′C ◦ fC . [Single embedding f ′ : B ∪C → D.]

Theorem. CRL has the AP; the same holds for its subvarieties CRLn

axiomatized by x ≤ xn.

We consider the frames WB = (B, ·, 1,≤, B) and
WC = (C, ·, 1,≤, C), and as before we construct the residuated
frame W = WB ⋆WC . For that we need

⊑BC := ⊑B ◦ fB ◦ (fC)
−1 ◦⊑C and ⊑CB = ⊑C ◦ fC ◦ (fB)

−1 ◦⊑B .

We verify that W satisfies the rules associated with x ≤ xn. So,
W

+ ∈ CRLn.

By taking the partial algebra B ∪C, we can prove that (W,B ∪C)
is a Gentzen frame. So there is an homomorphism q : B∪C → W

+,
which yields f ′B : B → W

+ and f ′C : C → W
+. We can easily check

that they are injective and they satisfy the commutation property.
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Modifications of the AP are known as follows.

■ Transferable injections: fB is assumed to be injective and f ′B
is required to be injective.
■ Transferable surjections: fB is assumed to be surjective and
f ′B is required to be surjective.
■ The congruence extension property: fB , fC are assumed to
be surjective and f ′B , f

′
C are required to be surjective.
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Modifications of the AP are known as follows.

■ Transferable injections: fB is assumed to be injective and f ′B
is required to be injective.
■ Transferable surjections: fB is assumed to be surjective and
f ′B is required to be surjective.
■ The congruence extension property: fB , fC are assumed to
be surjective and f ′B , f

′
C are required to be surjective.

The AP proof works in the same way!
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An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.
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An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.

Theorem. Countable CRL-chains are densifiable.
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An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.

Theorem. Countable CRL-chains are densifiable.

It is enough to be able to perform one-step densification, namely
given a countable CRL-chain B with a gap g < h, extend it to one
where this is no longer a gap (namely there is a new point p with
g < p < h).
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An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.

Theorem. Countable CRL-chains are densifiable.

It is enough to be able to perform one-step densification, namely
given a countable CRL-chain B with a gap g < h, extend it to one
where this is no longer a gap (namely there is a new point p with
g < p < h).

It suffuces to constuct a CRL-chain in which we can embed the
partial algebra B ∪ {p}, where g < p < h.
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An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.

Theorem. Countable CRL-chains are densifiable.

It is enough to be able to perform one-step densification, namely
given a countable CRL-chain B with a gap g < h, extend it to one
where this is no longer a gap (namely there is a new point p with
g < p < h).

It suffuces to constuct a CRL-chain in which we can embed the
partial algebra B ∪ {p}, where g < p < h.

It suffices to construct a residuated frame W from this data such
that (W,B ∪ {p}) is a Gentzen frame and W

+ is a chain.
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We consider the residuated frame WB = (B, ·, 1,≤, B).
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We consider the residuated frame WB = (B, ·, 1,≤, B). Also, we
consider the (residuated) frame Wp = (p∗, ·, 1,⊑p, {p}), where
p 6∈ B, p∗ = {pn : n ∈ N} and ⊑p is defined as follows:

1 ⊑p p iff 1 ≤ g and pn · p ⊑p p iff hn ≤ 1.
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We consider the residuated frame WB = (B, ·, 1,≤, B). Also, we
consider the (residuated) frame Wp = (p∗, ·, 1,⊑p, {p}), where
p 6∈ B, p∗ = {pn : n ∈ N} and ⊑p is defined as follows:

1 ⊑p p iff 1 ≤ g and pn · p ⊑p p iff hn ≤ 1.

We construct the frame W = WB ⋆Wp, where ⊑Bp and ⊑pB are
defined as follows:

b⊑Bpp iff b ≤ g and pn⊑pBb iff hn ≤ b.
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We consider the residuated frame WB = (B, ·, 1,≤, B). Also, we
consider the (residuated) frame Wp = (p∗, ·, 1,⊑p, {p}), where
p 6∈ B, p∗ = {pn : n ∈ N} and ⊑p is defined as follows:

1 ⊑p p iff 1 ≤ g and pn · p ⊑p p iff hn ≤ 1.

We construct the frame W = WB ⋆Wp, where ⊑Bp and ⊑pB are
defined as follows:

b⊑Bpp iff b ≤ g and pn⊑pBb iff hn ≤ b.

W
+ is a chain: basic closed elements {b}⊳ and {b  p}⊳.



Densification
Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations

Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL

FL

FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation

Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 29 / 44

We consider the residuated frame WB = (B, ·, 1,≤, B). Also, we
consider the (residuated) frame Wp = (p∗, ·, 1,⊑p, {p}), where
p 6∈ B, p∗ = {pn : n ∈ N} and ⊑p is defined as follows:

1 ⊑p p iff 1 ≤ g and pn · p ⊑p p iff hn ≤ 1.

We construct the frame W = WB ⋆Wp, where ⊑Bp and ⊑pB are
defined as follows:

b⊑Bpp iff b ≤ g and pn⊑pBb iff hn ≤ b.

W
+ is a chain: basic closed elements {b}⊳ and {b  p}⊳.

We show that (W,A ∪ {p}) is a Gentzen frame, so
q : A∪{p} → W

+ is an embedding and q(p) resolves the gap g < h.
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Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).
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Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).

Let B = Fm(var(φ)) and we consider the residuated frame WB

based on the preframe with WB = B∗, W ′
B = B and x⊑Bb iff

x ⇒ b is provable.
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Let B = Fm(var(φ)) and we consider the residuated frame WB
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B = B and x⊑Bb iff

x ⇒ b is provable. Likewise for C = Fm(var(ψ)) we obtain the
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φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).

Let B = Fm(var(φ)) and we consider the residuated frame WB

based on the preframe with WB = B∗, W ′
B = B and x⊑Bb iff

x ⇒ b is provable. Likewise for C = Fm(var(ψ)) we obtain the
frame WC . We then construct the frame W = WB ⋆WC as in the
proof of AP, where A = Fm(var(χ)).
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■ var(χ) ⊆ var(φ) ∩ var(ψ).

Let B = Fm(var(φ)) and we consider the residuated frame WB

based on the preframe with WB = B∗, W ′
B = B and x⊑Bb iff

x ⇒ b is provable. Likewise for C = Fm(var(ψ)) we obtain the
frame WC . We then construct the frame W = WB ⋆WC as in the
proof of AP, where A = Fm(var(χ)).

We prove that (W,B ∪C) is a cut-free Gentzen frame.



Interpolation
Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations

Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL

FL

FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation

Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 30 / 44

Theorem. FLe has the Craig interpolation property, i.e. if
⊢FLe

φ→ ψ, then there is a χ such that

■ ⊢FLe
φ→ χ and ⊢FLe

χ→ ψ
■ var(χ) ⊆ var(φ) ∩ var(ψ).

Let B = Fm(var(φ)) and we consider the residuated frame WB

based on the preframe with WB = B∗, W ′
B = B and x⊑Bb iff

x ⇒ b is provable. Likewise for C = Fm(var(ψ)) we obtain the
frame WC . We then construct the frame W = WB ⋆WC as in the
proof of AP, where A = Fm(var(χ)).

We prove that (W,B ∪C) is a cut-free Gentzen frame.

Corollary. If ⊢FLe
x ⇒ d, then x⊑d. It follows that FLe has the IP.
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Define a preframe with W = Fm∗, W ′ = Fm× Fm and x⊑(a, b) iff

■ if x 6= ε, then ⊢FLe
x ⇒ a ∨ b

■ if x = ε, then ⊢FLe
a or ⊢FLe

b.
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Define a preframe with W = Fm∗, W ′ = Fm× Fm and x⊑(a, b) iff

■ if x 6= ε, then ⊢FLe
x ⇒ a ∨ b

■ if x = ε, then ⊢FLe
a or ⊢FLe

b.

The corresponding algebraic property is:
For A ∈ K, there is a D ∈ K and an epimorphism f : D → A such
that if 1 ≤D a ∨ b, then 1 ≤A f(a) or 1 ≤A f(b).
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Theorem. FLe has the Disjunction property, i.e. if ⊢FLe
φ ∨ ψ,

then ⊢FLe
φ or ⊢FLe

ψ.

Define a preframe with W = Fm∗, W ′ = Fm× Fm and x⊑(a, b) iff

■ if x 6= ε, then ⊢FLe
x ⇒ a ∨ b

■ if x = ε, then ⊢FLe
a or ⊢FLe

b.

The corresponding algebraic property is:
For A ∈ K, there is a D ∈ K and an epimorphism f : D → A such
that if 1 ≤D a ∨ b, then 1 ≤A f(a) or 1 ≤A f(b).

This property holds for all subvarieties of CRL axiomatized with
equations over {∨, ·, 1}.
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Given a 3-counter machine the commutative monoid word
qir

n1

1 rn2

2 rn3

3 represents the configuration where the machine is at
state qi and the contents of the three registers are respectively
n1, n2, n3.
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Given a 3-counter machine the commutative monoid word
qir

n1

1 rn2

2 rn3

3 represents the configuration where the machine is at
state qi and the contents of the three registers are respectively
n1, n2, n3.

We let W and W ′ be the set of all such words, and we define u⊑v iff
the configuations corresponding to the word uv leads to qf via a
computation of the machine.
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3 represents the configuration where the machine is at
state qi and the contents of the three registers are respectively
n1, n2, n3.

We let W and W ′ be the set of all such words, and we define u⊑v iff
the configuations corresponding to the word uv leads to qf via a
computation of the machine.

The resulting frame is used to prove the correctness of the encoding.
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Given a 3-counter machine the commutative monoid word
qir

n1

1 rn2

2 rn3

3 represents the configuration where the machine is at
state qi and the contents of the three registers are respectively
n1, n2, n3.

We let W and W ′ be the set of all such words, and we define u⊑v iff
the configuations corresponding to the word uv leads to qf via a
computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

It is known that the subvarieties of RL axiomatized by x ≤ xn have
undecidable word problem, but their commutative versions have the
FEP.
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Given a 3-counter machine the commutative monoid word
qir

n1

1 rn2

2 rn3

3 represents the configuration where the machine is at
state qi and the contents of the three registers are respectively
n1, n2, n3.

We let W and W ′ be the set of all such words, and we define u⊑v iff
the configuations corresponding to the word uv leads to qf via a
computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

It is known that the subvarieties of RL axiomatized by x ≤ xn have
undecidable word problem, but their commutative versions have the
FEP.

We can construct commutative varieties with undecidable (or not
primitive-recursively decidable) word problem: for example
axiomatized by: x ≤ x2 ∨ x3.
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Given a 3-counter machine the commutative monoid word
qir

n1

1 rn2

2 rn3

3 represents the configuration where the machine is at
state qi and the contents of the three registers are respectively
n1, n2, n3.

We let W and W ′ be the set of all such words, and we define u⊑v iff
the configuations corresponding to the word uv leads to qf via a
computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

It is known that the subvarieties of RL axiomatized by x ≤ xn have
undecidable word problem, but their commutative versions have the
FEP.

We can construct commutative varieties with undecidable (or not
primitive-recursively decidable) word problem: for example
axiomatized by: x ≤ x2 ∨ x3.

(An intermediate machine allows us to convert to powers of a
carefully chosen integer K, so that the simple equation will not affect
the computation of the machine.)
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Given a set R of simple rules, we consider the system FLR, the
expansion by these rules.
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Given a set R of simple rules, we consider the system FLR, the
expansion by these rules.

Also we call set S of sequents elementary if it consists of
atomic/variable formulas and is closed under cuts: if S contains
x⇒ p and y, p, z ⇒ q, where p is a variable, it also contains
y, x, z ⇒ q.
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Given a set R of simple rules, we consider the system FLR, the
expansion by these rules.

Also we call set S of sequents elementary if it consists of
atomic/variable formulas and is closed under cuts: if S contains
x⇒ p and y, p, z ⇒ q, where p is a variable, it also contains
y, x, z ⇒ q.

We show that FLR admits modular cut-elimination: for any
elementary set S and a sequent s, if s is derivable from S, then it is
also cut-free derivable from S.
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Given a set R of simple rules, we consider the system FLR, the
expansion by these rules.

Also we call set S of sequents elementary if it consists of
atomic/variable formulas and is closed under cuts: if S contains
x⇒ p and y, p, z ⇒ q, where p is a variable, it also contains
y, x, z ⇒ q.

We show that FLR admits modular cut-elimination: for any
elementary set S and a sequent s, if s is derivable from S, then it is
also cut-free derivable from S.

We to obtain the [preframe W as we modify ⊑ as follows:

x⊑a iff x⇒ a is cut-free derivable from S in FLR.
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Given a set R of simple rules, we consider the system FLR, the
expansion by these rules.

Also we call set S of sequents elementary if it consists of
atomic/variable formulas and is closed under cuts: if S contains
x⇒ p and y, p, z ⇒ q, where p is a variable, it also contains
y, x, z ⇒ q.

We show that FLR admits modular cut-elimination: for any
elementary set S and a sequent s, if s is derivable from S, then it is
also cut-free derivable from S.

We to obtain the [preframe W as we modify ⊑ as follows:

x⊑a iff x⇒ a is cut-free derivable from S in FLR.

Now h : Fm → W
+ is the homomorphism extending

p 7→ q({p} ∪ {x : (x⇒ p) ∈ S}).
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a\a
a a\b

b
(a\b)\[(c\a)\(c\b)]

a\b

(b\c)\(a\c)

a

(a\b)\b

a\[(b/a)\b] [((a\b)/c)]\[a\(b/c)]
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a/b

(a ∧ b)\a (a ∧ b)\b
a b
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We define also an appropriate Hilbert system HL and for every
sublanguage K of L that contains the connective \, we denote by
KHL its K-fragment.
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We define also an appropriate Hilbert system HL and for every
sublanguage K of L that contains the connective \, we denote by
KHL its K-fragment. We establish the separation property: If
B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
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We define also an appropriate Hilbert system HL and for every
sublanguage K of L that contains the connective \, we denote by
KHL its K-fragment. We establish the separation property: If
B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
For a set of formulas B ∪ {c} over K, we let SK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}.
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B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
For a set of formulas B ∪ {c} over K, we let SK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
preframe W is the free monoid over SK, W ′ = SK and where x⊑a iff
B ⊢KHL φK(x⇒ a); here φK is an apporpriate transformation from
sequents to K-formulas.
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We define also an appropriate Hilbert system HL and for every
sublanguage K of L that contains the connective \, we denote by
KHL its K-fragment. We establish the separation property: If
B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
For a set of formulas B ∪ {c} over K, we let SK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
preframe W is the free monoid over SK, W ′ = SK and where x⊑a iff
B ⊢KHL φK(x⇒ a); here φK is an apporpriate transformation from
sequents to K-formulas.

If B ⊢HL c, then s[B] ⊢FL s(c). We have
{1 ≤ b | b ∈ B} |=W+ 1 ≤ c.



Strong separation
Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations

Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL

FL

FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation

Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 35 / 44

We define also an appropriate Hilbert system HL and for every
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KHL its K-fragment. We establish the separation property: If
B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
For a set of formulas B ∪ {c} over K, we let SK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
preframe W is the free monoid over SK, W ′ = SK and where x⊑a iff
B ⊢KHL φK(x⇒ a); here φK is an apporpriate transformation from
sequents to K-formulas.

If B ⊢HL c, then s[B] ⊢FL s(c). We have
{1 ≤ b | b ∈ B} |=W+ 1 ≤ c. Let h : FmL → W

+ be the
homomorphism that extends the identity assingment p 7→ q(p). So, if
h(1) ⊆W+ h(b), for all b ∈ B, then h(1) ⊆W+ h(c),
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We define also an appropriate Hilbert system HL and for every
sublanguage K of L that contains the connective \, we denote by
KHL its K-fragment. We establish the separation property: If
B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
For a set of formulas B ∪ {c} over K, we let SK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
preframe W is the free monoid over SK, W ′ = SK and where x⊑a iff
B ⊢KHL φK(x⇒ a); here φK is an apporpriate transformation from
sequents to K-formulas.

If B ⊢HL c, then s[B] ⊢FL s(c). We have
{1 ≤ b | b ∈ B} |=W+ 1 ≤ c. Let h : FmL → W

+ be the
homomorphism that extends the identity assingment p 7→ q(p). So, if
h(1) ⊆W+ h(b), for all b ∈ B, then h(1) ⊆W+ h(c),
Since h is a L-homomorphism we have h(1) = γ(ε). Moreover,
(W,SK) is a Gentzen frame, so for every subformula d of B ∪ {c},
h(d) = {d}⊳.
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We define also an appropriate Hilbert system HL and for every
sublanguage K of L that contains the connective \, we denote by
KHL its K-fragment. We establish the separation property: If
B ∪ {c} is a set of formulas over a sublanguage K of L that contains
\, then B ⊢HL c iff B ⊢K−HL c.
For a set of formulas B ∪ {c} over K, we let SK be the partial
subalgebra of FmK of all subformulas of B ∪ {c}. Consider the
preframe W is the free monoid over SK, W ′ = SK and where x⊑a iff
B ⊢KHL φK(x⇒ a); here φK is an apporpriate transformation from
sequents to K-formulas.

If B ⊢HL c, then s[B] ⊢FL s(c). We have
{1 ≤ b | b ∈ B} |=W+ 1 ≤ c. Let h : FmL → W

+ be the
homomorphism that extends the identity assingment p 7→ q(p). So, if
h(1) ⊆W+ h(b), for all b ∈ B, then h(1) ⊆W+ h(c),
Since h is a L-homomorphism we have h(1) = γ(ε). Moreover,
(W,SK) is a Gentzen frame, so for every subformula d of B ∪ {c},
h(d) = {d}⊳. Consequently, h(1) ⊆W+ h(d) iff γ(ε) ⊆W+ {d}⊳ iff
ε ∈ {d}⊳ iff ε N d. This is equivalent to B ⊢KHL d, so we have that
B ⊢KHL b, for all b ∈ B implies B ⊢KHL c. Thus, we obtain
B ⊢KHL c.
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A distributive residuated frame is a structure
W = (W, ◦, 1,©∧ ,⊑,W ′)

■ (W,⊑,W ′) is a lattice frame
■ (W, ◦, 1) is a monoid
■ (W,©∧ ) is a commutative, idempotent semigroup
■ both ◦ and ©∧ are residuated and the following condition holds:

x⊑z
x©∧ y⊑z

(©∧ i)
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A distributive residuated frame is a structure
W = (W, ◦, 1,©∧ ,⊑,W ′)

■ (W,⊑,W ′) is a lattice frame
■ (W, ◦, 1) is a monoid
■ (W,©∧ ) is a commutative, idempotent semigroup
■ both ◦ and ©∧ are residuated and the following condition holds:

x⊑z
x©∧ y⊑z

(©∧ i)

Theorem. The Galois algebra W
+ is a distributive RL.
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A distributive residuated frame is a structure
W = (W, ◦, 1,©∧ ,⊑,W ′)

■ (W,⊑,W ′) is a lattice frame
■ (W, ◦, 1) is a monoid
■ (W,©∧ ) is a commutative, idempotent semigroup
■ both ◦ and ©∧ are residuated and the following condition holds:

x⊑z
x©∧ y⊑z

(©∧ i)

Theorem. The Galois algebra W
+ is a distributive RL.

The Gentzen frame condition for left-∧ becomes even simpler:

a©∧ b⊑z

a ∧ b⊑z
(∧Lℓ)



Distributive frames
Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComlDM

BiFL frames

Hyper-frames

Examples

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 37 / 44

A distributive residuated frame is a structure
W = (W, ◦, 1,©∧ ,⊑,W ′)

■ (W,⊑,W ′) is a lattice frame
■ (W, ◦, 1) is a monoid
■ (W,©∧ ) is a commutative, idempotent semigroup
■ both ◦ and ©∧ are residuated and the following condition holds:

x⊑z
x©∧ y⊑z

(©∧ i)

Theorem. The Galois algebra W
+ is a distributive RL.

The Gentzen frame condition for left-∧ becomes even simpler:

a©∧ b⊑z

a ∧ b⊑z
(∧Lℓ)

Applications include:

■ Simple equations are: All equations over {∧,∨, ·, 1}.
■ A new distributive completion
■ Cut-elimination (DFL and BI-logic)
■ FMP, FEP
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An involutive frame is a structure W = (W, ◦, ε,∼,−,⊑), where

■ (W,⊑,W ) is a lattice frame
■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (x ◦ y)∼∼ = (x∼∼ ◦ y∼∼)
■ ◦ is residuated with x  z = (z− ◦ x)∼ and z � y = (y ◦ z∼)−
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An involutive frame is a structure W = (W, ◦, ε,∼,−,⊑), where

■ (W,⊑,W ) is a lattice frame
■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (x ◦ y)∼∼ = (x∼∼ ◦ y∼∼)
■ ◦ is residuated with x  z = (z− ◦ x)∼ and z � y = (y ◦ z∼)−

An element 0 in a residuated lattice A is called involutive if for all
a ∈ A we have ∼−a = a = −∼a, where ∼a = a\0 and −a = 0/a.
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An involutive frame is a structure W = (W, ◦, ε,∼,−,⊑), where

■ (W,⊑,W ) is a lattice frame
■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (x ◦ y)∼∼ = (x∼∼ ◦ y∼∼)
■ ◦ is residuated with x  z = (z− ◦ x)∼ and z � y = (y ◦ z∼)−

An element 0 in a residuated lattice A is called involutive if for all
a ∈ A we have ∼−a = a = −∼a, where ∼a = a\0 and −a = 0/a.

If W is an involutive frame its dual algebra has involutive element
{ε}⊳.
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An involutive frame is a structure W = (W, ◦, ε,∼,−,⊑), where

■ (W,⊑,W ) is a lattice frame
■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (x ◦ y)∼∼ = (x∼∼ ◦ y∼∼)
■ ◦ is residuated with x  z = (z− ◦ x)∼ and z � y = (y ◦ z∼)−

An element 0 in a residuated lattice A is called involutive if for all
a ∈ A we have ∼−a = a = −∼a, where ∼a = a\0 and −a = 0/a.

If W is an involutive frame its dual algebra has involutive element
{ε}⊳.

To the conditions for a Gentzen frame we add:

x⊑a
∼a⊑x∼

(∼L)
x⊑a∼

x⊑∼a
(∼R)

x⊑a

−a⊑x−
(−L) x⊑a−

x⊑−a
(−R)
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An involutive frame is a structure W = (W, ◦, ε,∼,−,⊑), where

■ (W,⊑,W ) is a lattice frame
■ (W, ◦, ε) is a monoid
■ x∼− = x = x−∼

■ (x ◦ y)∼∼ = (x∼∼ ◦ y∼∼)
■ ◦ is residuated with x  z = (z− ◦ x)∼ and z � y = (y ◦ z∼)−

An element 0 in a residuated lattice A is called involutive if for all
a ∈ A we have ∼−a = a = −∼a, where ∼a = a\0 and −a = 0/a.

If W is an involutive frame its dual algebra has involutive element
{ε}⊳.

To the conditions for a Gentzen frame we add:

x⊑a
∼a⊑x∼

(∼L)
x⊑a∼

x⊑∼a
(∼R)

x⊑a

−a⊑x−
(−L) x⊑a−

x⊑−a
(−R)

Applications include:

■ A new involutive completion
■ Cut-elimination
■ FMP
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:

(x•, x+) ◦ (y•, y+) = (x• · y•, x+ + y+)
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:

(x•, x+) ◦ (y•, y+) = (x• · y•, x+ + y+)

(x+, x•)⊕ (y+, y•) = (x+ + y+, x• · y•)
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:

(x•, x+) ◦ (y•, y+) = (x• · y•, x+ + y+)

(x+, x•)⊕ (y+, y•) = (x+ + y+, x• · y•)

1 = (1, 0), 0 = (0, 1), and −(a, b) = (b, a),
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:

(x•, x+) ◦ (y•, y+) = (x• · y•, x+ + y+)

(x+, x•)⊕ (y+, y•) = (x+ + y+, x• · y•)

1 = (1, 0), 0 = (0, 1), and −(a, b) = (b, a),

(x•, x+)⊑(y+, y•) ⇔ x• · y• ≤ x+ + y+.
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:

(x•, x+) ◦ (y•, y+) = (x• · y•, x+ + y+)

(x+, x•)⊕ (y+, y•) = (x+ + y+, x• · y•)

1 = (1, 0), 0 = (0, 1), and −(a, b) = (b, a),

(x•, x+)⊑(y+, y•) ⇔ x• · y• ≤ x+ + y+.

We also consider the map a 7→ (a, 0) from A to W and the map
a 7→ (a, 1) from A to W ′.
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An ℓ-bimonoid is a structure A = (A,∧,∨, ·, 1,+, 0), with a lattice
and two commutative monoid reducts, such that multiplciation
distributes over joins, addition over meets and x(y + z) ≤ xy + z.
Given such an algebra, we will construct an involutive A-frame FA.

We define W =W ′ = A×A and operations ◦ on W and ⊕ on W ,
where for all x•, x+, y•, y+, a, b ∈ A:

(x•, x+) ◦ (y•, y+) = (x• · y•, x+ + y+)

(x+, x•)⊕ (y+, y•) = (x+ + y+, x• · y•)

1 = (1, 0), 0 = (0, 1), and −(a, b) = (b, a),

(x•, x+)⊑(y+, y•) ⇔ x• · y• ≤ x+ + y+.

We also consider the map a 7→ (a, 0) from A to W and the map
a 7→ (a, 1) from A to W ′.

Theorem. If A is an ℓ-bimonoid, then FA is faithful involutive
A-frame. So, A embeds into the InCRL F

+

A
.
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A BiFLe-algebra is an algebra A = (A,∧,∨, ·,→, 1,+,−, 0), where
(A,∧,∨, ·,→, 1) and (A,∨,∧,+,−, 0) are commutative residuated
lattices.
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A BiFLe-algebra is an algebra A = (A,∧,∨, ·,→, 1,+,−, 0), where
(A,∧,∨, ·,→, 1) and (A,∨,∧,+,−, 0) are commutative residuated
lattices.

An FL+
e -algebra is an algebra A = (A,∧,∨, ·,→, 1,+, 0), where

(A,∧,∨, ·,→, 1) is a commutative residuated lattice and
x+ (y ∧ z) = (x+ y) ∧ (x+ z).
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A BiFLe-algebra is an algebra A = (A,∧,∨, ·,→, 1,+,−, 0), where
(A,∧,∨, ·,→, 1) and (A,∨,∧,+,−, 0) are commutative residuated
lattices.

An FL+
e -algebra is an algebra A = (A,∧,∨, ·,→, 1,+, 0), where

(A,∧,∨, ·,→, 1) is a commutative residuated lattice and
x+ (y ∧ z) = (x+ y) ∧ (x+ z).

A (commutative) biresiduated frame is a structure
W = (W, ◦, ε,N,W ′,⊕, ǫ), where

■ (W,N,W ′) is a lattice frame
■ (W, ◦, ε) and (W ′,⊕, ǫ) are commutative monoids.
■ x ◦ y⊑z iff y⊑x  z, and z⊑x⊕ y iff z � y⊑x.
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A BiFLe-algebra is an algebra A = (A,∧,∨, ·,→, 1,+,−, 0), where
(A,∧,∨, ·,→, 1) and (A,∨,∧,+,−, 0) are commutative residuated
lattices.

An FL+
e -algebra is an algebra A = (A,∧,∨, ·,→, 1,+, 0), where

(A,∧,∨, ·,→, 1) is a commutative residuated lattice and
x+ (y ∧ z) = (x+ y) ∧ (x+ z).

A (commutative) biresiduated frame is a structure
W = (W, ◦, ε,N,W ′,⊕, ǫ), where

■ (W,N,W ′) is a lattice frame
■ (W, ◦, ε) and (W ′,⊕, ǫ) are commutative monoids.
■ x ◦ y⊑z iff y⊑x  z, and z⊑x⊕ y iff z � y⊑x.

Using biresiduated frames we can prove that every FL+
e -algebra can

be embedded in a BiFLe-algebra.
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A hyperresiduated frame is a structure H = (W,W ′,⊢, ◦, ε), where

■ (W, ◦, ε) is a monoid and W ′ is a set.
■ ⊢ is an upward closed subset of H, the free semilattice over
W ×W ′.
■ For all x, y ∈W and z ∈W ′ there exist elements
x  z, z � y ∈W ′ such that for any h ∈ H,

⊢ (x ◦ y, z) | h ⇔⊢ (y, x  z) | h ⇔⊢ (x, z � y) | h.



Hyper-frames
Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComlDM

BiFL frames

Hyper-frames

Examples

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices – 41 / 44

A hyperresiduated frame is a structure H = (W,W ′,⊢, ◦, ε), where

■ (W, ◦, ε) is a monoid and W ′ is a set.
■ ⊢ is an upward closed subset of H, the free semilattice over
W ×W ′.
■ For all x, y ∈W and z ∈W ′ there exist elements
x  z, z � y ∈W ′ such that for any h ∈ H,

⊢ (x ◦ y, z) | h ⇔⊢ (y, x  z) | h ⇔⊢ (x, z � y) | h.

The dual algebra H
+ is the dual algebra of the residuated frame

r(H) = (W ×H,W ′ ×H,⊑, •, (ε; ∅)),

(x;h1) • (y;h2) = (x ◦ y;h1 | h2)

(x;h1)  (z;h2) = (x  z;h1 | h2)

(z;h2) � (x;h1) = (z � x;h1 | h2)

(x;h1)⊑(z;h2) ⇔ ⊢ (x, z) | h1 | h2.
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Example. If A = (A,∧,∨, ·, \, /, 1) is an residuated lattice, then
HA = (A,A,⊢, ·, 1) is a hyperresiduated frame, where:

⊢ (x1, y1)| . . . |(xn, yn) ⇐⇒ 1 ≤ γ1(x1\y1) ∨ · · · ∨ γn(xn\yn).
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Example. If A = (A,∧,∨, ·, \, /, 1) is an residuated lattice, then
HA = (A,A,⊢, ·, 1) is a hyperresiduated frame, where:

⊢ (x1, y1)| . . . |(xn, yn) ⇐⇒ 1 ≤ γ1(x1\y1) ∨ · · · ∨ γn(xn\yn).

The hyper-MacNeille completion of an FL-algebra A is H
+

A
.
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Example. If A = (A,∧,∨, ·, \, /, 1) is an residuated lattice, then
HA = (A,A,⊢, ·, 1) is a hyperresiduated frame, where:

⊢ (x1, y1)| . . . |(xn, yn) ⇐⇒ 1 ≤ γ1(x1\y1) ∨ · · · ∨ γn(xn\yn).

The hyper-MacNeille completion of an FL-algebra A is H
+

A
.

Example. Given a residuated frame W = (W,W ′,⊑, ◦, ε, ǫ), we
obtain a hyperresiduated frame h(W) = (W,W ′,⊢, ◦, ε, ǫ) by
defining

⊢ (x1, y1) | . . . | (xn, yn) ⇐⇒ x1⊑y1 or · · · or xn⊑yn.
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Example. If A = (A,∧,∨, ·, \, /, 1) is an residuated lattice, then
HA = (A,A,⊢, ·, 1) is a hyperresiduated frame, where:

⊢ (x1, y1)| . . . |(xn, yn) ⇐⇒ 1 ≤ γ1(x1\y1) ∨ · · · ∨ γn(xn\yn).

The hyper-MacNeille completion of an FL-algebra A is H
+

A
.

Example. Given a residuated frame W = (W,W ′,⊑, ◦, ε, ǫ), we
obtain a hyperresiduated frame h(W) = (W,W ′,⊢, ◦, ε, ǫ) by
defining

⊢ (x1, y1) | . . . | (xn, yn) ⇐⇒ x1⊑y1 or · · · or xn⊑yn.

Example. Let W be the free monoid over the set Fm of all formulas
and n-negated formulas n ∈ Z. We can define a hyperresiduated
frame from a hypersequent version of FL in the natural way.
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