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Algebraic semantics

Substructural logics

Algebraic semantics

FL

Substructural logics

A residuated lattice, or residuated lattice-ordered monoid, is an IR
algebra L — (L, /\, \/7 ‘Y \7 /, 1) SUCh that Residuated frames

Variants of frames

m (L,A,V) is a lattice,
m (L,-,1)is a monoid and
m forall a,b,ce L,

References

a-b<c & b<a\c & a<c/b

m Lattice-ordered groups: division is multiplication by inverse
m Heyting algebras: x-y=x Ay

m MV-algebras: z-y=y-z,zVy=(zr =y —v.

m Relation algebras: multiplication is composition

m ldeals of rings: usual multiplication of ideals

RL: the variety of all residuated lattices

CRL: the variety of residuated lattices with coommutative
multiplication

DRL: the variety of residuated lattices with distributive lattices
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Substructural logics
r=a yOa,OZ = C (Cut) (Id) Lattice representation
yoxoz = C a=a Residuated frames
yOCLOZ = C yObOZ = C T = qa T = b Variants of frames
(/\ Lg) (/\I—,r) (/\R) References

yoa N\ boz = ¢ yoa N\ boz = ¢ r=a/Ab

oaoz = ¢ 1Yoboz = ¢

x=0b
yoa V boz = ¢ r=aVb (VR) (VRr)

r=a\Vb

xr=a yYoboz=c

e (D T OR)

r = a\b

xr=a yoboz=c
yo(b/a) o xoz = ¢

(L)

Yyoz=a (1L)

yoloz = a
where a,b,c € Fm, x,y,z € Fm~.

() EHEEUR)

yoa o boz = ¢ r=a Yy=>o

roy=a-b

(‘R)

yoa - boz = ¢

e=1 (IR)
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(K) y — (ZC — y) (x S 1) Residuated frames
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Examples of substructural logics include

m classical: (C)+(K)+(W)+ ——¢ = ¢ (DN)

m intuitionistic (Brouwer, Heyting): (C)-+(K)+(W)

m  many-valued (tukasiewicz): (C)+(K)+ (¢ = ) = =0V
m MTL (Esteva, Godo): (C)+(K)+ (¢ — )V (¥ — @)

m  basic (Hajek): MTL+ ¢(¢p — ) = A

m relevance (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN)

s (MA)linear logic (Girard): (C)
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Lattices
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Lattices

For general (non-distributive) lattices, the poset of join irreducibles is
not enough to recover the lattice. We also need the meet irreducibles;
we denote their poset by M (L). For every distributive lattice M (L)
is isomorphic to J(L). Note taU Jc=1TbU Ja="1TcU | d=L.
Splitting pairs: (a,c), (b,a), (c,d).
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o
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We calculate {z}< for all upper elements z:

{a}9 = {a}, {d}< = {a,b}, {c}< = {b,c}.
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We calculate {z}< for all upper elements z:

{a}™ ={a}, {d}™ = {a, b}, {c}™ ={b,c}.

These correspond to the meet generators of the original lattice and
the lattice is obtained by intersections of these sets.
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C ||l al| d]| c
a
b X | X
C X

We calculate {z}< for all upper elements z:
{a}™ ={a}, {d}™ = {a, b}, {c}™ ={b,c}.
These correspond to the meet generators of the original lattice and

the lattice is obtained by intersections of these sets. In general we
obtain the Dedekind-McNeille completion of the original lattice.
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A lattice frame is a structure W = (W, C, W') where W and W' are  poieindsinkhort
sets and C is a binary relation from W to W’.

Gentzen lattice frames
Cut elimination for

For X CW and Y C W’ we define Jattices
Residuated frames
X[> = {b - W/ . x;b’ fOr a” T & X} Variants of frames
Y9={ae W :aly, forall y € Y} References

We define v(X) = XP<.

Lemma. If W is a lattice frame then the Galois/dual algebra
W+ = (y[P(W)],N,U) is a complete lattice.
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For X CW and Y C W’ we define Jattices
Residuated frames
X[> = {b - W/ . x;b’ fOr a” T & X} Variants of frames
Y9={ae W :aly, forall y € Y} References

We define v(X) = XP<.

Lemma. If W is a lattice frame then the Galois/dual algebra
W+ = (y[P(W)],N,U) is a complete lattice.

Every ~-closed set is an intersection of basic closed sets: {z}<
where z € W',
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Lattices

A lattice frame is a structure W = (W, C, W') where W and W’ are g

Dedekind-Birkhoff

sets and C is a binary relation from W to W’.
Gentzen lattice frames
Cut elimination for
For X CW and Y C W’ we define jattices
Residuated frames
X[> e {b 6 W/ : Qj;b’ fOr a” T E X} Variants of frames
Y9={ae W :aly, forall y € Y} References

We define v(X) = XP<.

Lemma. If W is a lattice frame then the Galois/dual algebra
W+ = (y[P(W)],N,U) is a complete lattice.

Every ~-closed set is an intersection of basic closed sets: {z}<,
where z € W',

If W satisfies the condition (COM), then W is a chain.

rl 2z yLw
xCw OR yCz

(COM)
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A Gentzen lattice frame is a pair (W, S), where W is a lattice Dedekin B kot

frame, S = (S, A, V) is an algebra, S maps to W and W’ and the S

conditions are satisfied for all a,b € S, z € W and z € W’. i dhumeden
xga CLEZ Residuated frames
fL'EZ (CUT) CL—ECL (Id) \R/a:ants of frames
alz bC 2 xCa xCb
a/\bgz( ) a/\bgz( ) zCa Nb AR
alz bCz zCa b
— — (VL ———— (VR/ —— (VRr
aV bz (VL) xga\/b( ) xga\/b( )

Corollary. The map ¢: S — W™, ¢(a) ={a}Tisa
homomorphism: g(a A b) = q(a) Aw+ q(b) and
g(a Ve b) = q(a) Vw+ q(b).
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Wi, = (L, <, L) is a lattice frame
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homomorphism: g(a A b) = q(a) Aw+ q(b) and

g(a Ve b) = q(a) Vw+ q(b). If C is antisymmetric on .S, then ¢ is
Injective.

Application (DM-completion/embedding): Given a lattice L,
Wi, = (L, <, L) is a lattice frame and the pair (Wp,L) is a Genzen
lattice frame. Wf is the Dedekind-MacNeille completion of L and
q:L— WE is an embedding.
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Theorem. (Cut elimination) Lat and Lat®! (Lat without cut)
prove the same sequents.
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Theorem. (Cut elimination) Lat and Lat®! (Lat without cut)

prove the same sequents. We consider the lattice frame W, where
W = Fm, W' = Fm and aCb iff a < b is provable in Lat®f.
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W = Fm, W/ = Fm and aCb iff a < b is provable in Lat°f. We will
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Theorem. (Cut elimination) Lat and Lat®! (Lat without cut)
prove the same sequents. We consider the lattice frame W, where
W = Fm, W/ = Fm and aCb iff a < b is provable in Lat°f. We will
show that if a sequent holds in all lattices then it is provable Lat®t.

Lemma. For all a,b € S, then a A b € q(a) Aw+ q(b) C q(a A b)
and a VB b € q(a) Vw+ q(b) C q(a VB b). (W,Fm) is cf-Gentzen.
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Theorem. (Cut elimination) Lat and Lat®! (Lat without cut)

prove the same sequents. We consider the lattice frame W, where
W = Fm, W/ = Fm and aCb iff a < b is provable in Lat°f. We will
show that if a sequent holds in all lattices then it is provable Lat®t.

Lemma. For all a,b € S, then a A b € q(a) Aw+ q(b) C q(a A b)
and a VB b € q(a) Vw+ q(b) C q(a VB b). (W,Fm) is cf-Gentzen.
Corollary. The homomorphism i : Fm — W™ extending the
variable assignment p — ¢(p) satisfies a € h(a) C g(a).

So, if Wt =a <, then a € h(a) C h(b) C q(b) = {b}<, so alb.
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Residuated frames
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m (W,C,W’)is a lattice frame
m (W, 0,¢) is a monoid
m there exist \\ and // such that for all z,y € W and z € W’

(zoy)Cz & yC(z\2) & zC(2/y).
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Lemma. Every equation over {V, -, 1} is equivalent to a conjunction
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Gentzen frames

rxla alz
2Cr (CUT) aCa (Id)
alCz bz zCa b
aV bz (VL) xCa Vb iR xCa Vb (VIR
alz bC z zCa xCb
a bz (ALE) bC z L) xCa Ab AR
aoblz rCa  yLb eCz
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zCa bLz zCa \\ b zCa bLz xCh // a

(\L) (\R)

a\bCx \\ 2 rCa\b b/aCz || (/L) ZCb/a (/R)

If we have a common subset S of W and W' that supports a (partial)
algebra S = (S, A, V, -, \,/,1), and for a,b,c € S, z,y e W, z € W',
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Gentzen frames
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If we have a common subset S of W and W' that supports a (partial)
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DM-completions

To a residuated lattice A, we associate the Gentzen frame (W4, A),
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where W = (A,-,1,<, A). Wedefinex\\ z =2z\zand z oz = z/x.
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A. = AU{e} fore & A, where aob = ab for a,b € A and
coa=aoec=a. Also,

rC(y,a,z) iff yoroz <a.

This is an A-frame, where the maps from A are a — a and

a+— (€,a,¢€).
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To a partially-odrered semigroup A = (A, <,-), we associate the
Gentzen frame (Wa,A), where Wp = (A.,-,C, A, x A X A,),
A. = AU{e} fore & A, where aob = ab for a,b € A and
coa=aoec=a. Also,

rC(y,a,z) iff yoroz <a.

This is an A-frame, where the maps from A are a — a and
a+— (€,a,¢€).

Theorem. The map x — z< is an embedding of A into W}. If A
has a multiplicative unit then the embeding preserves it. The
embedding preserves exising joins \/ X for which

y(\/ X)z = \(yx;z) for all y,z € A. The embedding preserves all
existing residuals.
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Pre-frames

Given a frame W = (W, o0,e, C, W’) which might not be residuated,
we can construct a residuated frame W = (W, 0,e,C, W') out of it.
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Pre-frames

Given a frame W = (W, o0,e, C, W’) which might not be residuated,
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We have xowoyCz iff wCx \ z / y
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Pre-frames

Given a frame W = (W, o0,e, C, W’) which might not be residuated,
we can construct a residuated frame W = (W, 0,e,C, W') out of it.

We have xowoyCz iff wCx \ z / y
= (z,z,y) e WX W' x W = W'

So we define: wC(x, z,y) iff £ o w o yCz.
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~
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Examples of frames: FL
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Examples of frames: FL

Based on the Gentzen system FL, we define the residuated frame
WEgr based on the preframe:

m (W,o,¢) is the free monoid over the set F'm of all formulas
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Based on the Gentzen system FL, we define the residuated frame
WEgr based on the preframe:

m (W,o,¢) is the free monoid over the set F'm of all formulas
m W' = Fm, and
m r NaiffFpp, x = a.

It is easy to see that (Wgr,, Fm) is a Gentzen frame. For example,

consider
xCa bCz

L
a\bCx \\ z (\L)
Where a,b,c € Fm, z,u,ve W =Fm*, ze€ W x Fm x W.
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m W' = Fm, and
m r NaiffFpp, x = a.

It is easy to see that (Wgr,, Fm) is a Gentzen frame. For example,

consider
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a\bCx \\ z (\L)

Where a,b,c € Fm, x,u,v € W =Fm™*, z€ W x Fm x W. The
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Based on the Gentzen system FL, we define the residuated frame
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m (W,o,¢) is the free monoid over the set F'm of all formulas
m W' = Fm, and
m r NaiffFpp, x = a.

It is easy to see that (Wgr,, Fm) is a Gentzen frame. For example,

consider
xCa bCz

a\bCx \\ z (\L)

Where a,b,c € Fm, x,u,v € W =Fm™*, z€ W x Fm x W. The
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Examples of frames: FL

Based on the Gentzen system FL, we define the residuated frame
WEgr based on the preframe:

m (W,o,¢) is the free monoid over the set F'm of all formulas
m W' = Fm, and
m r NaiffFpp, x = a.

It is easy to see that (Wgr,, Fm) is a Gentzen frame. For example,

consider
xCa bCz

a\bCx \\ z (\L)

Where a,b,c € Fm, x,u,v € W =Fm™*, z€ W x Fm x W. The
rule can be rewritten as
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Substructural logics

Lattice representation

Residuated frames

Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

FL

FMP

FEP

Combining frames
Amalgamation

Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE

Hilbert system for FL
Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices — 21 / 44



Nick Galatos, SYSMICS, Chapman, September 2018

r=a Yoaoz =
Yorxroz = C (cut) a=a (Id)

Yyoaoz = C yoboz = ¢

(ALY)

(ALr) r=a x=0>

yoa N\ boz = ¢ yoa N\ boz = ¢

yoaoz = ¢ yoboz = c

r=a/Ab

yoa V boz = ¢ r=aVb

xr=a yYoboz=c
yox o (a\b)oz = ¢

(0 T OR)

xr=a yoboz=c
yo(b/a) o xoz = ¢

(L)

() EHEEUR)

yoa o boz = ¢ r=a Yy=>o

(‘R)

yoa - boz = ¢ roy=a-b
Yyoz=a
yoloz = a o) e=>1 (IR)

where a,b,c € Fm, x,y,z € Fm~.

(VL) T = a (VRY) x=0b

r=aVb (VRT)
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Finite model property

Substructural logics

Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,
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Finite model property

Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define sT the set of pairs
(w, (z,c,y)) in W x W' such that z,w,y = c is one of those
sequents.
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Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define sT the set of pairs
(w, (z,c,y)) in W x W' such that z,w,y = c is one of those
sequents.
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Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define sT the set of pairs
(w, (z,c,y)) in W x W' such that z,w,y = c is one of those
sequents.
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Finite model property

Nick Galatos, SYSMICS, Chapman, September 2018

Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define sT the set of pairs
(w, (z,c,y)) in W x W' such that z,w,y = c is one of those
sequents.

We also define a new relation T, = C U (sT)¢. The resulting frame
W, is residuated.

Using the finiteness of (C,)¢ we get that W is finite.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define sT the set of pairs
(w, (z,c,y)) in W x W' such that z,w,y = c is one of those
sequents.

We also define a new relation T, = C U (sT)¢. The resulting frame
W, is residuated.

Using the finiteness of (C,)¢ we get that W is finite. Moreover
(W4, Fm) is a cut-free Gentzen frame and s is not valid in W,

Corollary. The system FL has the finite model property. The same
holds for reducing simple extensions.
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Given a sequent s which is not provable in FL we construct a finite
countermodel of it.

Recall the residuated frame Wgyr, based on zCa iff z = a is
provable in FLet,

Even though s is not provable we consider all the sequents that
appear in all failed proof attempts if s. We define sT the set of pairs
(w, (z,c,y)) in W x W' such that z,w,y = c is one of those
sequents.

We also define a new relation T, = C U (sT)¢. The resulting frame
W, is residuated.

Using the finiteness of (C,)¢ we get that W is finite. Moreover
(W4, Fm) is a cut-free Gentzen frame and s is not valid in W,

Corollary. The system FL has the finite model property. The same
holds for reducing simple extensions. The corresponding varieties of
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FEP

Substructural logics

A class of algebras K has the finite embeddability property (FEP) if
for every A € IC, every finite partial subalgebra B of A can be
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FEP

Substructural logics

Lattice representation

Residuated frames

A class of algebras K has the finite embeddability property (FEP) if  Residuated frames

Simple equations

for every A € IC, every finite partial subalgebra B of A can be Gentzen frames

(partially) embedded in a finite D € K. e s

We define W based on the preframe Ermbeding of subreducts
using preframes

m (W,- 1) is the submonoid of A generated by B, Sxamples of frames: FL

m 2D by x <A b A2

Combining frames
Amalgamation

Theorem. Every variety of integral (alt., by commutative and Gen. amalgamation

Densification

knotted) RL's axiomatized by equations over {V, -, 1} has the FEP. Densification

Interpolation

. . Disjunction property
[ | q: B — W+ IS an embeddlng Undecidability
Modular CE
[ | W+ E V Hilbert system for FL

Strong separation

m W is finite

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices — 24 / 44



FEP

Substructural logics

Nick Galatos, SYSMICS, Chapman, September 2018

A class of algebras K has the finite embeddability property (FEP) if
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(partially) embedded in a finite D € K.

We define W based on the preframe

m (W,- 1) is the submonoid of A generated by B,
m W' =B, and
m 2D by x <A b

Theorem. Every variety of integral (alt., by commutative and
knotted) RL's axiomatized by equations over {V, -, 1} has the FEP.
m ¢:B — W7 is an embedding

s Wrey

m W s finite

Corollary. These varieties are generated as quasivarieties by their
finite members.

Lattice representation

Residuated frames

Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL
FL

FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE

Hilbert system for FL
Strong separation

Variants of frames

References

Duality for residuated lattices — 24 / 44



FEP

Substructural logics

Nick Galatos, SYSMICS, Chapman, September 2018

A class of algebras K has the finite embeddability property (FEP) if
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m (W,- 1) is the submonoid of A generated by B,
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we extend C from BC to B’ U C’:

beCb iff ¢Cb \\ b

Substructural logics

Lattice representation

Residuated frames

Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL
FL

FMP

FEP

Amalgamation

Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE

Hilbert system for FL
Strong separation

Variants of frames

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices — 25 / 44



Combining frames

Given two commutative residuated frames
Wpg = (B,o,e,Cp,B’) and W¢g = (C,0,¢,C,C"),
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Amalgamation

A class K of similar algebras has the amalgamation property (AP), if
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there is a D € K and embeddings f; : B — D and f,: C — D
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there is a D € K and embeddings f; : B — D and f,: C — D
such that fgz o fg = fi o fo. [Single embedding f': BUC — D]

Theorem. CRL has the AP; the same holds for its subvarieties CRL,,
axiomatized by z < z".
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We = (C,-,1,<,C), and as before we construct the residuated
frame W = Wg x* W,. For that we need
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for a” A,B, C ~ ]C and embeddings fB : A — B and fC’ : A — C, Gentzen frames
there is a D € K and embeddings f; : B — D and f,: C — D e e

Embedding of subreducts

such that fgz o fg = fi o fo. [Single embedding f': BUC — D] Pre-frames
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using preframes
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for a” A,B, C ~ ]C and embeddings fB : A — B and fC’ : A — C, Gentzen frames
there is a D € K and embeddings f; : B — D and f,: C — D e e
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Interpolation
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By taking the partial algebra B U C, we can prove that (W, B U C)
is a Gentzen frame.
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for a” A,B, C ~ ]C and embeddings fB : A — B and fC’ : A — C, Gentzen frames
there is a D € K and embeddings f; : B — D and f,: C — D e e
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W+ E CRLn Variants of frames

References
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which yields f; : B— W™ and f/,: C - WT.
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for a” A,B, C ~ ]C and embeddings fB : A — B and fC’ : A — C, Gentzen frames
there is a D € K and embeddings f; : B — D and f,: C — D e e
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Gen. amalgamation
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Densification

An countable RL-chain is called densifiable if it can be embedded in
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Densification

An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.

Theorem. Countable C RL-chains are densifiable.

It is enough to be able to perform one-step densification, namely
given a countable C'RL-chain B with a gap g < h, extend it to one
where this is no longer a gap (namely there is a new point p with
g<p<h).
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It is enough to be able to perform one-step densification, namely
given a countable C'RL-chain B with a gap g < h, extend it to one
where this is no longer a gap (namely there is a new point p with
g<p<h).

It suffuces to constuct a C'RL-chain in which we can embed the
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Densification
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An countable RL-chain is called densifiable if it can be embedded in
a dense countable RL-chain.

Theorem. Countable C RL-chains are densifiable.

It is enough to be able to perform one-step densification, namely
given a countable C'RL-chain B with a gap g < h, extend it to one
where this is no longer a gap (namely there is a new point p with
g<p<h).

It suffuces to constuct a C'RL-chain in which we can embed the
partial algebra B U {p}, where g < p < h.
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Densification

We consider the residuated frame Wg = (B, -, 1, <, B). Also, we
consider the (residuated) frame W, = (p*,-, 1,5, {p}), where
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We consider the residuated frame Wg = (B, -, 1, <, B). Also, we
consider the (residuated) frame W, = (p*,-, 1,5, {p}), where
p & B, p* ={p" : n € N} and C,, is defined as follows:
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Given a set R of simple rules, we consider the system FLg, the
expansion by these rules.

Also we call set S of sequents elementary if it consists of
atomic/variable formulas and is closed under cuts: if S contains
x = p and y,p, 2z = q, where p is a variable, it also contains

Y, T, 2 = q.

We show that FL i admits modular cut-elimination: for any
elementary set S and a sequent s, if s is derivable from S, then it is
also cut-free derivable from S.

We to obtain the [preframe W as we modify C as follows:

xCa iff x = a is cut-free derivable from S in FLp.
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Hilbert system for FL

a a\b

a\a ; (a\D)\[(\a)\(c\b)]

a\[(b/a)\D]

S

(aAb)\a (aADb)\b

a\(a V b)

b\ (a\ab)

Nick Galatos, SYSMICS, Chapman, September 2018

[((a\b)/c)[\[a\(b/c)]

S

S
>
S~

b\ (a v b)

b\ (a\c)]\(ab\c)

a\b a
(B\c)\(a\c)  (a\b)\b

b\a
a/b

[(a\b) A (a\e)]\[a\ (b A c)]

a\c b\c
(aVb)\c

\(a\a)  a\(1\a)

Substructural logics

Lattice representation

Residuated frames

Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts

Pre-frames
Embedding of subreducts
using preframes

Examples of frames: FL
FL

FMP

FEP

Combining frames
Amalgamation

Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Duality for residuated lattices — 34 / 44



Strong separation

We define also an appropriate Hilbert system HL and for every

sublanguage K of £ that contains the connective \, we denote by
JCHL its K-fragment.
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Theorem. The Galois algebra W is a distributive RL.
The Gentzen frame condition for left-A becomes even simpler:

a@®bCz

a N\ bCz s

Applications include:

m  Simple equations are: All equations over {A,V, -, 1}.
m A new distributive completion

m  Cut-elimination (DFL and Bl-logic)

m FMP, FEP
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To the conditions for a Gentzen frame we add:

zCa rla

~ (~L)

~alx

(—L) -ﬁgﬁ:-(—R)

a;IZNa (NR) —alox™ rC—a
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Existence of ComIDM

Substructural logics

Lattice representation

Residuated frames

An ¢-bimonoid is a structure A = (A, A, V, -, 1,+,0), with a lattice Variants of frames

and two commutative monoid reducts, such that multiplciation Jistrbutive frames
distributes over joins, addition over meets and z(y + z) < zy + 2.

BiFL frames

Hyper-frames

Given such an algebra, we will construct an involutive A-frame F 4.

Examples

References
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We also consider the map a +— (a,0) from A to W and the map
a+— (a,1) from A to W’'.
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We also consider the map a +— (a,0) from A to W and the map
a+— (a,1) from A to W’'.

Theorem. If A is an /-bimonoid, then F A is faithful involutive
A-frame. So, A embeds into the InCRL FX.
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BiFL frames
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BiFL frames

Nick Galatos, SYSMICS, Chapman, September 2018

A BiF L.-algebra is an algebra A = (A, A\, V, -, —,1,4,—,0), where
(A, A, V,-,—,1) and (A, V, A\, +,—,0) are commutative residuated
lattices.

An FL7T-algebra is an algebra A = (A, A,V, -, —,1,4,0), where
(A, A, V,-,—,1) is a commutative residuated lattice and
r+yNz)=(z+y A(z+2)
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W = (W,o0,e, N,W' ®,¢€), where

m (W, N,W')is a lattice frame

m (W,o,e) and (W', @, €) are commutative monoids.
m zxoylziffyCx \ 2, and zEx @y iff 2z / yCux.

Using biresiduated frames we can prove that every F'L-algebra can
be embedded in a BiF'L.-algebra.
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Hyper-frames

A hyperresiduated frame is a structure H = (W, W' |-, 0,¢), where

m (W, o0,¢) is a monoid and W' is a set.

m I is an upward closed subset of H, the free semilattice over
W x W',

m Forall x,y € W and z € W’ there exist elements

x\ 2,2 /|y € W’ such that for any h € H,

F(zoy,z) | h ©F (y,z\2) | h &F(z,2 /) y) | h.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames
Involutive frames
Existence of ComIDM
BiFL frames

Hyper-frames

Examples

References

Nick Galatos, SYSMICS, Chapman, September 2018 Duality for residuated lattices — 41 / 44



Hyper-frames

Substructural logics

Lattice representation

Residuated frames

A hyperresiduated frame is a structure H = (W, W' F o, ¢), where Variants of frames
. . . Distributive frames
m (W, o0,¢) is a monoid and W' is a set.

Involutive frames

m [ is an upward closed subset of H, the free semilattice over EXFI:EfmomeIDM
L
m Forall z,y € W and z € W' there exist elements il

x\ 2,z //y € W such that for any h € H, References

F(zoy,2z) |h F (y,z\2) | h &F(x,2 /) y) | h.

The dual algebra H' is the dual algebra of the residuated frame
T(H) — (W x HW' x H L. e, (g; Q))),

(z;h1) @ (y;h2) = (zoy;hy | ho)
(z;h1) \ (z5h2) = (z\ 2571 | ho)
(z3he) [/ (msh1) = (2 /) z5ha | ho)
(x;h1)E(z;he) < F(x,2) | hy | he.
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Examples

Example. If A = (A, A, V,-,\,/,1) is an residuated lattice, then

Ha = (A, A,F-, -, 1) is a hyperresiduated frame, where:

= ($1,y1)| e |(xnayn)

Nick Galatos, SYSMICS, Chapman, September 2018

— 1 < 71($1\y1) VeV ’Vn(xn\yn)
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Examples

Example. If A = (A, A, V,-,\,/,1) is an residuated lattice, then

Ha = (A, A,F-, -, 1) is a hyperresiduated frame, where:

= ($1,y1)| e |(xnayn)

— 1 < 71($1\y1) VeV ’Vn(xn\yn)

The hyper-MacNeille completion of an FL-algebra A is HX.

Nick Galatos, SYSMICS, Chapman, September 2018
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Examples

Example. If A = (A, A, V,-,\,/,1) is an residuated lattice, then
Ha = (A, A,F-, -, 1) is a hyperresiduated frame, where:

= (x1,91)] - (@, yn) = 1< y(@\y1) V- o V(2 \Un).

The hyper-MacNeille completion of an FL-algebra A is HX.

Example. Given a residuated frame W = (W, W’ C,o0,¢,¢€), we
obtain a hyperresiduated frame h(W) = (W, W' F, o,¢,¢€) by
defining

= (z1,91) | - | (@n,yn) = x1Cyi or --- or z,Cyn,.
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Examples

Example. If A = (A, A, V,-,\,/,1) is an residuated lattice, then
Ha = (A, A,F-, -, 1) is a hyperresiduated frame, where:

= (x1,91)] - (@, yn) = 1< y(@\y1) V- o V(2 \Un).

The hyper-MacNeille completion of an FL-algebra A is HX.

Example. Given a residuated frame W = (W, W' C, o, ¢,¢€), we
obtain a hyperresiduated frame h(W) = (W, W' F, o,¢,¢€) by
defining

= (z1,91) | - | (@n,yn) = x1Cyi or --- or z,Cyn,.

Example. Let W be the free monoid over the set F'm of all formulas
and n-negated formulas n € Z. We can define a hyperresiduated
frame from a hypersequent version of FL in the natural way.
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