Is there a useful duality for residuated lattices?

Nick Galatos University of Denver ngalatos@du.edu

September, 2018

Nick Galatos, SYSMICS, Chapman, September 2018

Duality for residuated lattices – 1 / 44

Algebraic semantics

FL

Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

Substructural logics

Nick Galatos, SYSMICS, Chapman, September 2018

Duality for residuated lattices – 2 / 44

Algebraic semantics

A residuated lattice, or residuated lattice-ordered monoid, is an algebra $\mathbf{L} = (L, \wedge, \vee, \cdot, \backslash, /, 1)$ such that

$$\blacksquare (L, \land, \lor) \text{ is a lattice,}$$

- $\blacksquare (L,\cdot,1) \text{ is a monoid and}$
- for all $a, b, c \in L$,

 $a \cdot b \leq c \Leftrightarrow b \leq a \setminus c \Leftrightarrow a \leq c/b.$

Lattice-ordered groups: division is multiplication by inverse

• Heyting algebras:
$$x \cdot y = x \wedge y$$

 $\blacksquare \quad \mathsf{MV-algebras:} \ x \cdot y = y \cdot x, \ x \lor y = (x \to y) \to y.$

- Relation algebras: multiplication is composition
- Ideals of rings: usual multiplication of ideals

RL: the variety of all residuated lattices CRL: the variety of residuated lattices with coommutative multiplication DRL: the variety of residuated lattices with distributive lattices Variants of frames

FL

Substructural logics

Algebraic semantics

FL

Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

$$\frac{x \Rightarrow a \quad y \circ a \circ z \Rightarrow c}{y \circ x \circ z \Rightarrow c} (\text{cut}) \qquad \overline{a \Rightarrow a} (\text{Id})$$

$$\frac{y \circ a \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c} (\wedge L\ell) \quad \frac{y \circ b \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c} (\wedge Lr) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \wedge b} (\wedge R)$$

$$\frac{y \circ a \circ z \Rightarrow c}{y \circ a \vee b \circ z \Rightarrow c} (\vee L) \quad \frac{x \Rightarrow a}{x \Rightarrow a \vee b} (\vee R\ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \vee b} (\vee Rr)$$

$$\frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ (a \setminus b) \circ z \Rightarrow c} (\setminus L) \quad \frac{a \circ x \Rightarrow b}{x \Rightarrow a \setminus b} (\setminus R)$$

$$\frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ (b \land a) \circ x \circ z \Rightarrow c} (/L) \quad \frac{x \circ a \Rightarrow b}{x \Rightarrow b \land a} (/R)$$

$$\frac{y \circ a \circ b \circ z \Rightarrow c}{y \circ a \cdot b \circ z \Rightarrow c} (\cdot L) \quad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \circ y \Rightarrow a \cdot b} (\cdot R)$$

$$\frac{y \circ z \Rightarrow a}{y \circ 1 \circ z \Rightarrow a} (1L) \quad \overline{z \Rightarrow 1} (1R)$$

where $a, b, c \in Fm$, $x, y, z \in Fm^*$.

		0	Substructural logics
(C) (K) (W)	$[x \to (y \to z)] \to [y \to (x \to z)]$ $y \to (x \to y)$ $[x \to (x \to y)] \to (x \to y)$	$egin{aligned} (xy = yx)\ (x \leq 1)\ (x \leq x^2) \end{aligned}$	Algebraic semantics FL Substructural logics <u>Lattice representation</u> <u>Residuated frames</u> <u>Variants of frames</u> <u>References</u>

$$\begin{array}{ll} (\mathsf{C}) & [x \to (y \to z)] \to [y \to (x \to z)] & (xy = yx) \\ (\mathsf{K}) & y \to (x \to y) & (x \leq 1) \\ (\mathsf{W}) & [x \to (x \to y)] \to (x \to y) & (x \leq x^2) \end{array}$$

Examples of substructural logics include

- classical: (C)+(K)+(W)+ $\neg \neg \phi = \phi$ (DN)
- **intuitionistic** (Brouwer, Heyting): (C)+(K)+(W)
- many-valued (Łukasiewicz): (C)+(K)+ ($\phi \rightarrow \psi$) $\rightarrow \psi = \phi \lor \psi$
- **MTL** (Esteva, Godo): (C)+(K)+ $(\phi \rightarrow \psi) \lor (\psi \rightarrow \phi)$
- **basic (Hajek)**: MTL+ $\phi(\phi \rightarrow \psi) = \phi \land \psi$
- **relevance** (Anderson, Belnap): (C)+(W)+ Distrib. (+ DN)
- (MA)linear logic (Girard): (C)

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

Lattice representation

Lattices

Substructural logics

For general (non-distributive) lattices, the poset of join irreducibles is not enough to recover the lattice.

Lattices

Substructural logics

For general (non-distributive) lattices, the poset of join irreducibles is not enough to recover the lattice. We also need the *meet irreducibles*; we denote their poset by $M(\mathbf{L})$.

Lattices

Substructural logics

For general (non-distributive) lattices, the poset of join irreducibles is not enough to recover the lattice. We also need the *meet irreducibles*; we denote their poset by $M(\mathbf{L})$. For every distributive lattice $M(\mathbf{L})$ is isomorphic to $J(\mathbf{L})$. Note $\uparrow a \cup \downarrow c = \uparrow b \cup \downarrow a = \uparrow c \cup \downarrow d = L$. *Splitting pairs*: (a, c), (b, a), (c, d).

Contexts

Substructural logics

 \boldsymbol{C}

0

 \times

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

Substructural logics

We calculate $\{z\}^{\triangleleft}$ for all upper elements z: $\{a\}^{\triangleleft} = \{a\}, \{d\}^{\triangleleft} = \{a, b\}, \{c\}^{\triangleleft} = \{b, c\}.$ Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

Substructural logics

We calculate $\{z\}^{\triangleleft}$ for all upper elements z: $\{a\}^{\triangleleft} = \{a\}, \{d\}^{\triangleleft} = \{a, b\}, \{c\}^{\triangleleft} = \{b, c\}.$

These correspond to the meet generators of the original lattice and the lattice is obtained by intersections of these sets.

Substructural logics

We calculate $\{z\}^{\triangleleft}$ for all upper elements z: $\{a\}^{\triangleleft} = \{a\}, \{d\}^{\triangleleft} = \{a, b\}, \{c\}^{\triangleleft} = \{b, c\}.$

These correspond to the meet generators of the original lattice and the lattice is obtained by intersections of these sets. In general we obtain the Dedekind-McNeille completion of the original lattice.

a

 \times

 \boldsymbol{a}

b

 \boldsymbol{C}

 \boldsymbol{a}

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

sets and \sqsubseteq is a binary relation from W to W'.

A *lattice frame* is a structure $\mathbf{W} = (W, \sqsubseteq, W')$ where W and W' are

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

A *lattice frame* is a structure $\mathbf{W} = (W, \sqsubseteq, W')$ where W and W' are sets and \sqsubseteq is a binary relation from W to W'.

For $X \subseteq W$ and $Y \subseteq W'$ we define

$$X^{\rhd} = \{ b \in W' : x \sqsubseteq b, \text{ for all } x \in X \}$$
$$Y^{\triangleleft} = \{ a \in W : a \sqsubseteq y, \text{ for all } y \in Y \}$$

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

A *lattice frame* is a structure $\mathbf{W} = (W, \sqsubseteq, W')$ where W and W' are sets and \sqsubseteq is a binary relation from W to W'.

For $X \subseteq W$ and $Y \subseteq W'$ we define

$$X^{\rhd} = \{ b \in W' : x \sqsubseteq b, \text{ for all } x \in X \}$$
$$Y^{\triangleleft} = \{ a \in W : a \sqsubseteq y, \text{ for all } y \in Y \}$$

We define $\gamma(X) = X^{\triangleright \triangleleft}$.

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

A *lattice frame* is a structure $\mathbf{W} = (W, \sqsubseteq, W')$ where W and W' are sets and \sqsubseteq is a binary relation from W to W'.

For $X \subseteq W$ and $Y \subseteq W'$ we define

 $X^{\rhd} = \{ b \in W' : x \sqsubseteq b, \text{ for all } x \in X \}$ $Y^{\triangleleft} = \{ a \in W : a \sqsubseteq y, \text{ for all } y \in Y \}$

We define $\gamma(X) = X^{\triangleright \triangleleft}$.

Lemma. If W is a lattice frame then the *Galois/dual algebra* $W^+ = (\gamma[\mathcal{P}(W)], \cap, \cup_{\gamma})$ is a complete lattice.

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

A *lattice frame* is a structure $\mathbf{W} = (W, \sqsubseteq, W')$ where W and W' are sets and \sqsubseteq is a binary relation from W to W'.

For $X \subseteq W$ and $Y \subseteq W'$ we define

 $X^{\rhd} = \{ b \in W' : x \sqsubseteq b, \text{ for all } x \in X \}$ $Y^{\triangleleft} = \{ a \in W : a \sqsubseteq y, \text{ for all } y \in Y \}$

We define $\gamma(X) = X^{\triangleright \triangleleft}$.

Lemma. If W is a lattice frame then the *Galois/dual algebra* $W^+ = (\gamma[\mathcal{P}(W)], \cap, \cup_{\gamma})$ is a complete lattice.

Every γ -closed set is an intersection of *basic closed sets*: $\{z\}^{\triangleleft}$, where $z \in W'$.

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

A *lattice frame* is a structure $\mathbf{W} = (W, \sqsubseteq, W')$ where W and W' are sets and \sqsubseteq is a binary relation from W to W'.

For $X \subseteq W$ and $Y \subseteq W'$ we define

 $X^{\rhd} = \{ b \in W' : x \sqsubseteq b, \text{ for all } x \in X \}$ $Y^{\triangleleft} = \{ a \in W : a \sqsubseteq y, \text{ for all } y \in Y \}$

We define $\gamma(X) = X^{\triangleright \triangleleft}$.

Lemma. If W is a lattice frame then the *Galois/dual algebra* $W^+ = (\gamma[\mathcal{P}(W)], \cap, \cup_{\gamma})$ is a complete lattice.

Every γ -closed set is an intersection of *basic closed sets*: $\{z\}^{\triangleleft}$, where $z \in W'$.

If W satisfies the condition (COM), then W^+ is a chain.

 $\frac{x \sqsubseteq z \quad y \sqsubseteq w}{x \sqsubseteq w \quad OR \quad y \sqsubseteq z}$ (COM)

A *Gentzen lattice frame* is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice

Substructural logics

 					
Latt	ice	rep	rese	nta	tion

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

References

frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra,

A Gentzen lattice frame is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra, S maps to W and W'

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

A Gentzen lattice frame is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra, S maps to W and W' and the conditions are satisfied for all $a, b \in S$, $x \in W$ and $z \in W'$.

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (CUT) \quad \frac{a \sqsubseteq a}{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \quad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \quad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

Corollary. The map $q : \mathbf{S} \to \mathbf{W}^+$, $q(a) = \{a\}^{\triangleleft}$ is a homomorphism: $q(a \wedge_{\mathbf{B}} b) = q(a) \wedge_{\mathbf{W}^+} q(b)$ and $q(a \vee_{\mathbf{B}} b) = q(a) \vee_{\mathbf{W}^+} q(b)$.

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

A Gentzen lattice frame is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra, S maps to W and W' and the conditions are satisfied for all $a, b \in S$, $x \in W$ and $z \in W'$.

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (\mathsf{CUT}) \quad \frac{a \sqsubseteq a}{a \sqsubseteq a} (\mathsf{Id})$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}\ell) \quad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}r) \quad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land \mathsf{R})$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor \mathsf{L}) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor \mathsf{R}\ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor \mathsf{R}r)$$

Corollary. The map $q : \mathbf{S} \to \mathbf{W}^+$, $q(a) = \{a\}^{\triangleleft}$ is a homomorphism: $q(a \wedge_{\mathbf{B}} b) = q(a) \wedge_{\mathbf{W}^+} q(b)$ and $q(a \vee_{\mathbf{B}} b) = q(a) \vee_{\mathbf{W}^+} q(b)$. If \sqsubseteq is antisymmetric on S, then q is injective.

Substructural logics

Lattice representation

Lattices Contexts Dedekind-Birkhoff Lattice frames Gentzen lattice frames Cut elimination for lattices Residuated frames Variants of frames

A Gentzen lattice frame is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra, S maps to W and W' and the conditions are satisfied for all $a, b \in S$, $x \in W$ and $z \in W'$.

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (\mathsf{CUT}) \quad \frac{a \sqsubseteq a}{a \sqsubseteq a} (\mathsf{Id})$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}\ell) \quad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}r) \quad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land \mathsf{R})$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor \mathsf{L}) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor \mathsf{R}\ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor \mathsf{R}r)$$

Corollary. The map $q : \mathbf{S} \to \mathbf{W}^+$, $q(a) = \{a\}^{\triangleleft}$ is a homomorphism: $q(a \wedge_{\mathbf{B}} b) = q(a) \wedge_{\mathbf{W}^+} q(b)$ and $q(a \vee_{\mathbf{B}} b) = q(a) \vee_{\mathbf{W}^+} q(b)$. If \sqsubseteq is antisymmetric on S, then q is injective.

Application (DM-completion/embedding): Given a lattice L, $W_L = (L, \leq, L)$ is a lattice frame Substructural logics

Lattice representation Lattices Contexts Dedekind-Birkhoff Lattice frames Gentzen lattice frames Cut elimination for lattices Residuated frames Variants of frames

A Gentzen lattice frame is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra, S maps to W and W' and the conditions are satisfied for all $a, b \in S$, $x \in W$ and $z \in W'$.

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (\mathsf{CUT}) \quad \frac{a \sqsubseteq a}{a \sqsubseteq a} (\mathsf{Id})$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}\ell) \quad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}r) \quad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land \mathsf{R})$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor \mathsf{L}) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor \mathsf{R}\ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor \mathsf{R}r)$$

Corollary. The map $q : \mathbf{S} \to \mathbf{W}^+$, $q(a) = \{a\}^{\triangleleft}$ is a homomorphism: $q(a \wedge_{\mathbf{B}} b) = q(a) \wedge_{\mathbf{W}^+} q(b)$ and $q(a \vee_{\mathbf{B}} b) = q(a) \vee_{\mathbf{W}^+} q(b)$. If \sqsubseteq is antisymmetric on S, then q is injective.

Application (DM-completion/embedding): Given a lattice L, $W_L = (L, \leq, L)$ is a lattice frame and the pair (W_L, L) is a Genzen lattice frame.

Substructural logics

Lattice representation

Lattices Contexts Dedekind-Birkhoff Lattice frames Gentzen lattice frames Cut elimination for lattices Residuated frames Variants of frames

A Gentzen lattice frame is a pair (\mathbf{W}, \mathbf{S}) , where \mathbf{W} is a lattice frame, $\mathbf{S} = (S, \wedge, \vee)$ is an algebra, S maps to W and W' and the conditions are satisfied for all $a, b \in S$, $x \in W$ and $z \in W'$.

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (CUT) \quad \frac{a \sqsubseteq a}{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \quad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \quad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

Corollary. The map $q : \mathbf{S} \to \mathbf{W}^+$, $q(a) = \{a\}^{\triangleleft}$ is a homomorphism: $q(a \wedge_{\mathbf{B}} b) = q(a) \wedge_{\mathbf{W}^+} q(b)$ and $q(a \vee_{\mathbf{B}} b) = q(a) \vee_{\mathbf{W}^+} q(b)$. If \sqsubseteq is antisymmetric on S, then q is injective.

Application (DM-completion/embedding): Given a lattice L, $\mathbf{W}_{\mathbf{L}} = (L, \leq, L)$ is a lattice frame and the pair $(\mathbf{W}_{\mathbf{L}}, \mathbf{L})$ is a Genzen lattice frame. $\mathbf{W}_{\mathbf{L}}^+$ is the Dedekind-MacNeille completion of L and $q: \mathbf{L} \to \mathbf{W}_{\mathbf{L}}^+$ is an embedding. Lattice representation

Lattices Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

$\frac{a \le b \quad b \le a}{a = b} \qquad \frac{a \le b \quad b \le c}{a \le c}$

Substructural logics

Lattice representation

Lattices

Contexts

Dedekind-Birkhoff

Lattice frames

Gentzen lattice frames Cut elimination for lattices

Residuated frames

Variants of frames

Substructural logics

	Lattice representation
	Lattices
	Contexts
$a \leq b b \leq a \qquad a \leq b b \leq c$	Dedekind-Birkhoff
$\frac{1}{a \leq a}$ $\frac{a = b}{a \leq a}$	Lattice frames
$a \leq a$ $a \equiv b$ $a \leq c$	Gentzen lattice frames
	Cut elimination for
	lattices
a < c $b < c$ $c < a$ $c < b$	Residuated frames
$\frac{\overline{a \land b < c}}{a \land b < c} \qquad \frac{\overline{a \land b < c}}{a \land b < c} \qquad \frac{\overline{c < a \land b}}{c < a \land b}$	Variants of frames
	References

Substructural logics

	Lattice representation
	Lattices
1	Contexts
$b \leq c$	Dedekind-Birkhoff
	Lattice frames
C	Gentzen lattice frames
	Cut elimination for
	lattices
$c \leq b$	lattices Residuated frames
$\frac{c \le b}{\land b}$	lattices Residuated frames Variants of frames
$\frac{c \le b}{\land b}$	Iattices Residuated frames Variants of frames References

$\frac{a}{a \leq a}$ $\frac{a}{a}$	$\frac{a \le b b \le a}{a = b}$	$\frac{a \le b b \le c}{a \le c}$
$\frac{a \le c}{a \land b \le c}$	$\frac{b \le c}{a \land b \le c}$	$\frac{c \le a c \le b}{c \le a \land b}$
$\frac{c \le a}{c \le a \lor b}$	$\frac{c \le b}{c \le a \lor b}$	$\frac{a \le c b \le c}{a \lor b \le c}$

Substructural logics

			Lattice representation
			Lattices
			Contexts
	$a \leq b b \leq a$	$a \leq b b \leq c$	Dedekind-Birkhoff
$\overline{a \leq a}$	a-b		Lattice frames
$u \ge u$	u = 0	$u \leq c$	Gentzen lattice frames
			Cut elimination for lattices
$a \leq c$	$b \leq c$	$c \le a c \le b$	Residuated frames
$\overline{a \wedge b \leq c}$	$\overline{a \wedge b \leq c}$	$\overline{c \le a \land b}$	Variants of frames
			References
$\frac{c \le a}{c \le a > \sqrt{b}}$	$\frac{c \le b}{c \le c > b}$	$\frac{a \le c b \le c}{a \ge c + b \le c}$	
$c \leq a \lor b$	$c \leq a \lor b$	$a \lor o \leq c$	

Theorem. (Cut elimination) Lat and Lat^{cf} (Lat without cut) prove the same sequents.

Substructural logics

			Lattice representation
			Lattices
			Contexts
($a \leq 0 0 \leq a$	$a \leq b b \leq c$	Dedekind-Birkhoff
$\frac{1}{a < a}$	a-b	$a \leq c$	Lattice frames
$u \leq u$	u = 0	$u \leq c$	Gentzen lattice frames
			Cut elimination for lattices
$a \leq c$	$b \leq c$	$c \leq a c \leq b$	Residuated frames
$\overline{a \wedge b < c}$	$\overline{a \wedge b < c}$	$\overline{c < a \wedge b}$	Variants of frames
	—	—	References
$c \leq a$	$c \leq b$	$a \le c b \le c$	
$\frac{-}{\alpha \left(\alpha \right) \left(h \right)}$	$\frac{-}{\alpha \left(\alpha \right) \left(b \right)}$	$\frac{1}{a \vee b \leq a}$	
$c \ge a \lor o$	$c \ge a \lor o$	$a \lor v \geq c$	

Theorem. (Cut elimination) Lat and Lat^{cf} (Lat without cut) prove the same sequents. We consider the lattice frame \mathbf{W} , where W = Fm, W' = Fm and $a \sqsubseteq b$ iff $a \le b$ is provable in Lat^{cf}.

Substructural logics

lattice frames nination for

			Lattice representation
			Lattices
			Contexts
	$a \leq b b \leq a$	$a \leq b b \leq c$	Dedekind-Birkhoff
$\overline{a < a}$	$\frac{a-b}{a-b}$		Lattice frames
$u \ge u$	u = 0	$u \leq c$	Gentzen lattice frame
			Cut elimination for lattices
$a \leq c$	$b \leq c$	$c \le a c \le b$	Residuated frames
$a \wedge b \leq c$	$\overline{c} \qquad \overline{a \wedge b < c}$	$c \leq a \wedge b$	Variants of frames
			References
$c \leq a$	$c \leq b$	$a \leq c b \leq c$	
${a < a > b}$	${a \leq a \setminus b}$	$\frac{1}{2}$	
$c \ge a \lor b$	$c \leq a \lor b$	$u \lor v \leq c$	

Theorem. (Cut elimination) Lat and Lat^{cf} (Lat without cut) prove the same sequents. We consider the lattice frame \mathbf{W} , where W = Fm, W' = Fm and $a \Box b$ iff a < b is provable in Lat^{cf}. We will show that if a sequent holds in all lattices then it is provable Lat^{cf}.

Substructural logics

Lattice representation

Dedekind-Birkhoff Lattice frames

Residuated frames

Variants of frames

Gentzen lattice frames Cut elimination for

Lattices Contexts

lattices

References

$\frac{a}{a \le a}$ $\frac{a}{a}$	$\frac{b \le b b \le a}{a = b}$	$\frac{a \le b b \le c}{a \le c}$	
$\frac{a \le c}{a \land b \le c}$	$\frac{b \le c}{a \land b \le c}$	$\frac{c \le a c \le b}{c \le a \land b}$	
$\frac{c \le a}{c \le a \lor b}$	$\frac{c \le b}{c \le a \lor b}$	$\frac{a \le c b \le c}{a \lor b \le c}$	

Theorem. (Cut elimination) Lat and Lat^{cf} (Lat without cut) prove the same sequents. We consider the lattice frame W, where W = Fm, W' = Fm and $a \sqsubseteq b$ iff $a \le b$ is provable in Lat^{cf}. We will show that if a sequent holds in all lattices then it is provable Lat^{cf}. Lemma. For all $a, b \in S$, then $a \land_{\mathbf{B}} b \in q(a) \land_{\mathbf{W}^+} q(b) \subseteq q(a \land_{\mathbf{B}} b)$ and $a \lor_{\mathbf{B}} b \in q(a) \lor_{\mathbf{W}^+} q(b) \subseteq q(a \lor_{\mathbf{B}} b)$. (W, Fm) is cf-Gentzen.

Substructural logics

Lattice representation

Dedekind-Birkhoff Lattice frames

Residuated frames

Variants of frames

Gentzen lattice frames Cut elimination for

Lattices Contexts

lattices

References

$\frac{a}{a \le a} \qquad \frac{a}{a}$	$\frac{\leq b b \leq a}{a = b}$	$\frac{a \le b b \le c}{a \le c}$	
$\frac{a \le c}{a \land b \le c}$	$\frac{b \le c}{a \land b \le c}$	$\frac{c \le a c \le b}{c \le a \land b}$	
$\frac{c \le a}{c \le a \lor b}$	$\frac{c \le b}{c \le a \lor b}$	$\frac{a \le c b \le c}{a \lor b \le c}$	

Theorem. (Cut elimination) Lat and Lat^{cf} (Lat without cut) prove the same sequents. We consider the lattice frame \mathbf{W} , where W = Fm, W' = Fm and $a \sqsubseteq b$ iff $a \le b$ is provable in Lat^{cf}. We will show that if a sequent holds in all lattices then it is provable Lat^{cf}. Lemma. For all $a, b \in S$, then $a \wedge_{\mathbf{B}} b \in q(a) \wedge_{\mathbf{W}^+} q(b) \subseteq q(a \wedge_{\mathbf{B}} b)$ and $a \vee_{\mathbf{B}} b \in q(a) \vee_{\mathbf{W}^+} q(b) \subseteq q(a \vee_{\mathbf{B}} b)$. (\mathbf{W}, \mathbf{Fm}) is cf-Gentzen. **Corollary.** The homomorphism $h : \mathbf{Fm} \to \mathbf{W}^+$ extending the variable assignment $p \mapsto q(p)$ satisfies $a \in h(a) \subseteq q(a)$. So, if $\mathbf{W}^+ \models a \le b$, then $a \in h(a) \subseteq h(b) \subseteq q(b) = \{b\}^{\triangleleft}$, so $a \sqsubseteq b$.
Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Residuated frames

Residuated frames

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A residuated frame is a structure $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ where

- $\blacksquare \quad (W, \sqsubseteq, W') \text{ is a lattice frame}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ is a monoid}$
- there exist $\$ and $\$ such that for all $x, y \in W$ and $z \in W'$

 $(x \circ y) \sqsubseteq z \iff y \sqsubseteq (x \setminus \!\!\! \setminus z) \iff x \sqsubseteq (z /\!\!\! / y).$

Residuated frames

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

A *residuated frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ where

- $\blacksquare \quad (W, \sqsubseteq, W') \text{ is a lattice frame}$
- $\blacksquare (W, \circ, \varepsilon) \text{ is a monoid}$

• there exist $\$ and $/\!\!/$ such that for all $x, y \in W$ and $z \in W'$

 $(x \circ y) \sqsubseteq z \iff y \sqsubseteq (x \setminus \!\!\! \setminus z) \iff x \sqsubseteq (z /\!\!\! / y).$

Corollary. If W is a residuated frame then the *Galois/dual algebra* $W^+ = (\gamma[\mathcal{P}(W)], \cap, \cup_{\gamma}, \circ_{\gamma}, \gamma(1), \backslash, /)$ is a residuated lattice, where $X \circ Y = \{x \circ y : x \in X, y \in Y\},$ $X \setminus Y = \{z : X \circ \{z\} \subseteq Y\}$ $Y/X = \{z : \{z\} \circ X \subseteq Y\}.$

Substructural logics Lattice representation **Residuated frames** Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Consider the equation ε :

 $xyw \le x^2 \lor yx \lor xw^3y^2$

Consider the equation ε :

$$xyw \le x^2 \lor yx \lor xw^3y^2$$

$$\frac{x^2 \le z \quad yx \le z \quad xw^3y^2 \le z}{xyw \le z}$$

Substructural logics
 Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames Embedding of subreducts using preframes
Examples of frames: FL
FL
FMP
FEP
Combining frames
Amalgamation
Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE
Hilbert system for FL
Strong separation
Variants of frames
References

Consider the equation ε :

$$xyw \le x^2 \lor yx \lor xw^3y^2$$

$$\frac{x^2 \le z \quad yx \le z \quad xw^3y^2 \le z}{xyw \le z}$$

$$\frac{x \circ x \sqsubseteq z \quad y \circ x \sqsubseteq z \quad x \circ w \circ w \circ w \circ y \circ y \ N \ z}{x \circ y \circ w \sqsubseteq z} \ R(\varepsilon)$$

Substructural logics
Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames
Embedding of subreducts
using preframes
Examples of frames: FL
FL
FMP
FEP
Amalgamation
Gen. amaigamation
Densification
Densification
Disignation
Lindonido bility
Medular CE
Strong constation
Strong separation
Variants of frames
References

Consider the equation ε :

$$xyw \le x^2 \lor yx \lor xw^3y^2$$

$$\frac{x^2 \le z \quad yx \le z \quad xw^3y^2 \le z}{xyw \le z}$$

$$\frac{x \circ x \sqsubseteq z \quad y \circ x \sqsubseteq z \quad x \circ w \circ w \circ w \circ y \circ y \ N \ z}{x \circ y \circ w \sqsubseteq z} \ R(\varepsilon)$$

Theorem: If W satisfies $R(\varepsilon)$ iff W^+ satisfies ε .

Nick Galatos, SYSMICS, Chapman, September 2018

Duality for residuated lattices – 15 / 44

Consider the equation ε :

$$xyw \le x^2 \lor yx \lor xw^3y^2$$

$$\frac{x^2 \le z \quad yx \le z \quad xw^3y^2 \le z}{xyw \le z}$$

$$\frac{x \circ x \sqsubseteq z \quad y \circ x \sqsubseteq z \quad x \circ w \circ w \circ w \circ y \circ y \ N \ z}{x \circ y \circ w \sqsubseteq z} \ R(\varepsilon)$$

Theorem: If W satisfies $R(\varepsilon)$ iff W^+ satisfies ε .

Lemma. Every equation over $\{\lor, \cdot, 1\}$ is equivalent to a conjunction of *simple* equations: $t_0 \leq t_1 \lor \cdots \lor t_n$, where t_i are $\{\cdot, 1\}$ -terms and t_0 is linear.

Substructural logics
 Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames
Embedding of subreducts
using pretrames
Examples of frames: FL
FL
FEP Contraction of the second
Amalgamation
Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE
Hilbert system for FL
Strong separation
Variants of frames

Substructural logics
 Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreduct
Pre-frames
Embedding of subreduct
using pretrames
Examples of frames: FL
FL
FMP
FEP
Combining trames
Amalgamation
Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE
Hilbert system for FL
Strong separation
Variants of frames
References

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (CUT) \qquad \frac{a \sqsubseteq a}{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \qquad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \qquad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubset z} (\land L\ell) \qquad \frac{b \sqsubseteq z}{a \land b \sqsubset z} (\land Lr) \qquad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubset a \land b} (\land R)$$

	Substructural logics
	Lattice representation
	Residuated frames
	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
	Embedding of subreducts
	Pre-frames Embedding of subreducts using preframes
	Examples of frames: FL FL
	FMP
	FEP
	Combining frames
	Amalgamation
D)	Gen. amalgamation
N)	Densification
	Densification
	Interpolation
	Disjunction property
	Undecidability
	Modular CE
	Hilbert system for FL
	Strong separation
	Variants of frames

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (CUT) \qquad \overline{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \qquad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \qquad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \qquad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \qquad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \circ b \sqsubseteq z}{a \cdot b \sqsubseteq z} (\cdot \mathsf{L}) \qquad \frac{x \sqsubseteq a \quad y \sqsubseteq b}{x \circ y \sqsubseteq a \cdot b} (\cdot \mathsf{R}) \qquad \frac{\varepsilon \sqsubseteq z}{1 \sqsubseteq z} (1\mathsf{L}) \qquad \frac{\varepsilon \sqsubseteq 1}{\varepsilon \sqsubseteq 1} (1\mathsf{R})$$

	Substructural logics
	Lattice representation
	Residuated frames
	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
	Embedding of subreducts
	Pre-frames
	Embedding of subreducts
	using preframes
	Examples of frames: FL
	FL
	Combining from co
	Cen amplifymation
LR)	Densification
	Densification
	Internolation
	Disjunction property
(/K)	Undecidability
	Modular CE
	Hilbert system for FL
	Strong separation
	Variants of frames
	variants of frames

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (CUT) \qquad \frac{a \sqsubseteq a}{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \qquad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \qquad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \qquad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \qquad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \circ b \sqsubseteq z}{a \cdot b \sqsubseteq z} (\cdot L) = \frac{x \sqsubseteq a \quad y \sqsubseteq b}{x \circ y \sqsubseteq a \cdot b} (\cdot R) = \frac{\varepsilon \sqsubseteq z}{1 \sqsubseteq z} (1L) = \frac{\varepsilon \sqsubseteq 1}{\varepsilon \sqsubseteq 1} (1R)$$
$$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{a \setminus b \sqsubseteq x \setminus z} (\setminus L) = \frac{x \sqsubseteq a \setminus b}{x \sqsubseteq a \setminus b} (\setminus R) = \frac{x \sqsubseteq a \quad b \sqsubseteq z}{b / a \sqsubseteq z / / x} (/L) = \frac{x \sqsubseteq b / / a}{x \sqsubseteq b / a} (/R)$$

	Substructural logics
	Lattice representation
	Residuated frames
	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
	Embedding of subreduct
	Pre-frames
	Embedding of subreduct
	using pretrames
	Examples of frames: FL
	FL
	FMP
	FEP
	Combining frames
	Amalgamation
२)	Gen. amalgamation
·	Densification
	Densification
	Disjunction property
(/R)	Undecidability
()	Modular CE
	Hilbert system for Fl
	Strong separation
	otiong separation
rtial)	Variants of frames

References

$$\frac{x \sqsubseteq a \ a \sqsubseteq z}{x \sqsubseteq z} (CUT) \quad \overline{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z \ b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \quad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \quad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \quad \frac{x \sqsubseteq a}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \circ b \sqsubseteq z}{a \lor b \sqsubseteq z} (\cdot L) \quad \frac{x \sqsubseteq a}{x \circ y \sqsubseteq a \lor b} (\cdot R) \quad \frac{\varepsilon \sqsubseteq z}{1 \sqsubseteq z} (1L) \quad \varepsilon \sqsubseteq 1}{\varepsilon \trianglerighteq 1} (1R)$$

$$\frac{x \sqsubseteq a}{a \lor b \sqsubseteq x} (\land L) \quad \frac{x \sqsubseteq a \land b}{x \sqsubseteq a \lor b} (\land R) \quad \frac{x \sqsubseteq a}{b \lor a \lor c} (\land Lr) \quad \frac{x \sqsubseteq b / a}{x \lor a \land b} (\land R)$$

If we have a common subset S of W and W' that supports a (partial) algebra $\mathbf{S} = (S, \wedge, \vee, \cdot, \backslash, /, 1)$, and for $a, b, c \in S$, $x, y \in W$, $z \in W'$,

	`
	Lattice representation
	Residuated frames
	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
	Embedding of subreducts
(r)	Pre-frames
	Embedding of subreducts
	Examples of frames: Fl
R)	FI
···)	FMP
	FEP
	Combining frames
	Amalgamation
$(1\mathbf{P})$	Gen. amalgamation
	Densification
	Densification
/ a	Interpolation
$\frac{a}{-}$ (/R)	Disjunction property
$\frac{1}{a}$ (/N)	Undecidability
u	Modular CE
	Hilbert system for FL
	Strong separation
(partial)	Variants of frames

Substructural logics

References

$$\frac{x \sqsubseteq a \quad a \sqsubseteq z}{x \sqsubseteq z} (CUT) \qquad \overline{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z \quad b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \qquad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \qquad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \qquad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \qquad \frac{x \sqsubseteq a \quad x \sqsubseteq b}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \circ b \sqsubseteq z}{a \land b \sqsubseteq z} (\cdot L) \qquad \frac{x \sqsubseteq a \quad y \sqsubseteq b}{x \circ y \sqsubseteq a \cdot b} (\cdot R) \qquad \frac{\varepsilon \sqsubseteq z}{1 \sqsubseteq z} (1L) \qquad \varepsilon \sqsubseteq 1 (1R)$$

$$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{a \lor b \sqsubseteq x \lor z} (\land L) \qquad \frac{x \sqsubseteq a \land b}{x \sqsubseteq a \land b} (\land R) \qquad \frac{x \sqsubseteq a \land b \sqsubseteq z}{x \sqsubseteq a \land b} (\land R)$$

If we have a common subset S of W and W' that supports a (partial) algebra $\mathbf{S} = (S, \wedge, \vee, \cdot, \backslash, /, 1)$, and for $a, b, c \in S$, $x, y \in W$, $z \in W'$, then we call (\mathbf{W}, \mathbf{S}) a Gentzen frame and we call \mathbf{W} an S-frame.

	Substructurur logics
	Lattice representation
	Residuated frames
	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
`	Embedding of subreduc
)	Pre-frames
,	Embedding of subreduc
	using preframes
	Examples of frames: FL
)	FL
	FMP
	FEP
	Combining frames
	Amalgamation
1R)	Gen. amalgamation
	Densification
	Densification
1	
- (/R)	Disjunction property
	Modular CE
	Hilbort system for El
	Strong concration
	Strong Separation
(1.1)	Variants of frames

Substructural logics

References

$$\frac{x \sqsubseteq a \ a \sqsubseteq z}{x \sqsubseteq z} (CUT) \qquad \overline{a \sqsubseteq a} (Id)$$

$$\frac{a \sqsubseteq z \ b \sqsubseteq z}{a \lor b \sqsubseteq z} (\lor L) \qquad \frac{x \sqsubseteq a}{x \sqsubseteq a \lor b} (\lor R\ell) \qquad \frac{x \sqsubseteq b}{x \sqsubseteq a \lor b} (\lor Rr)$$

$$\frac{a \sqsubseteq z}{a \land b \sqsubseteq z} (\land L\ell) \qquad \frac{b \sqsubseteq z}{a \land b \sqsubseteq z} (\land Lr) \qquad \frac{x \sqsubseteq a \ x \sqsubseteq b}{x \sqsubseteq a \land b} (\land R)$$

$$\frac{a \circ b \sqsubseteq z}{a \land b \sqsubseteq z} (\cdot L) \qquad \frac{x \sqsubseteq a \ y \sqsubseteq b}{x \circ y \sqsubseteq a \cdot b} (\cdot R) \qquad \frac{\varepsilon \sqsubseteq z}{1 \sqsubseteq z} (1L) \qquad \varepsilon \amalg 1 (1R)$$

$$\frac{x \sqsubseteq a \ b \sqsubseteq z}{a \lor b \sqsubseteq x \lor z} (\land L) \qquad \frac{x \sqsubseteq a \ b \lor b}{x \sqsubseteq a \lor b} (\land R) \qquad \frac{x \sqsubseteq a \ b \sqsubseteq z}{x \sqsubseteq a \land b} (\land R)$$

If we have a common subset S of W and W' that supports a (partial) algebra $\mathbf{S} = (S, \land, \lor, \land, \backslash, /, 1)$, and for $a, b, c \in S$, $x, y \in W$, $z \in W'$, then we call (\mathbf{W}, \mathbf{S}) a Gentzen frame and we call \mathbf{W} an S-frame. Again, $q : \mathbf{S} \to \mathbf{W}^+$ is a homomorphism (in the full signature).

DM-completions

Substructural logics

Lattice representation Residuated frames **Residuated frames** Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

To a residuated lattice \mathbf{A} , we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A, \cdot, 1, \leq, A)$.

DM-completions

Substructural logics Lattice representation Residuated frames **Residuated frames** Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

To a residuated lattice \mathbf{A} , we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A, \cdot, 1, \leq, A)$. We define $x \mid | z = x \mid z$ and z / | x = z/x.

Theorem. The map $x \mapsto x^{\triangleleft}$ is an embedding of A into \mathbf{W}_{A}^{+} .

DM-completions

Substructural logics

Lattice representation Residuated frames **Residuated frames** Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

To a residuated lattice \mathbf{A} , we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A, \cdot, 1, \leq, A)$. We define $x \mid | z = x \setminus z$ and z / | x = z/x.

Theorem. The map $x \mapsto x^{\triangleleft}$ is an embedding of A into $\mathbf{W}_{\mathbf{A}}^+$.

Corollary. The variety of residuated lattices is closed under DM-completions.

Embedding of subreducts	Substructural logics
	Lattice representation
	Residuated frames
o a partially-odrered semigroup $\mathbf{A} = (A < \cdot)$	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
	Embedding of subreducts
	Pre-frames
	Embedding of subreducts using preframes
	Examples of frames: FL
	FL
	FMP
	FEP
	Combining frames
	Amalgamation
	Gen. amalgamation
	Densification
	Densification
	Interpolation
	Disjunction property
	Undecidability
	Modular CE
	Hilbert system for FL
	Strong separation
	Variants of frames
	References

To a partially-odrered semigroup $\mathbf{A} = (A, \leq, \cdot)$, we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A_{\varepsilon}, \cdot, \sqsubseteq, A_{\varepsilon} \times A \times A_{\varepsilon})$, $A_{\varepsilon} = A \cup \{\varepsilon\}$ for $\varepsilon \notin A$, where $a \circ b = ab$ for $a, b \in A$ and $\varepsilon \circ a = a \circ \varepsilon = a$.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

To a partially-odrered semigroup $\mathbf{A} = (A, \leq, \cdot)$, we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A_{\varepsilon}, \cdot, \sqsubseteq, A_{\varepsilon} \times A \times A_{\varepsilon})$, $A_{\varepsilon} = A \cup \{\varepsilon\}$ for $\varepsilon \notin A$, where $a \circ b = ab$ for $a, b \in A$ and $\varepsilon \circ a = a \circ \varepsilon = a$. Also,

 $x \sqsubseteq (y, a, z)$ iff $y \circ x \circ z \le a$.

Substructural logics

Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

To a partially-odrered semigroup $\mathbf{A} = (A, \leq, \cdot)$, we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A_{\varepsilon}, \cdot, \sqsubseteq, A_{\varepsilon} \times A \times A_{\varepsilon})$, $A_{\varepsilon} = A \cup \{\varepsilon\}$ for $\varepsilon \notin A$, where $a \circ b = ab$ for $a, b \in A$ and $\varepsilon \circ a = a \circ \varepsilon = a$. Also,

 $x \sqsubseteq (y, a, z)$ iff $y \circ x \circ z \le a$.

This is an **A**-frame, where the maps from A are $a \mapsto a$ and $a \mapsto (\varepsilon, a, \varepsilon)$.

Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

To a partially-odrered semigroup $\mathbf{A} = (A, \leq, \cdot)$, we associate the Gentzen frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A_{\varepsilon}, \cdot, \sqsubseteq, A_{\varepsilon} \times A \times A_{\varepsilon})$, $A_{\varepsilon} = A \cup \{\varepsilon\}$ for $\varepsilon \notin A$, where $a \circ b = ab$ for $a, b \in A$ and $\varepsilon \circ a = a \circ \varepsilon = a$. Also,

 $x \sqsubseteq (y, a, z)$ iff $y \circ x \circ z \le a$.

This is an A-frame, where the maps from A are $a \mapsto a$ and $a \mapsto (\varepsilon, a, \varepsilon)$.

Theorem. The map $x \mapsto x^{\triangleleft}$ is an embedding of \mathbf{A} into $\mathbf{W}_{\mathbf{A}}^+$. If \mathbf{A} has a multiplicative unit then the embedding preserves it. The embedding preserves exising joins $\bigvee X$ for which $y(\bigvee X)z = \bigvee (yx_iz)$ for all $y, z \in A$. The embedding preserves all existing residuals.

Substructural logics

Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames
Embedding of subreducts
using preframes
Examples of frames: FL
FL
FMP
FEP
Combining frames
Amalgamation
Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE
Hilbert system for FL
Strong separation
Variants of frames
References

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames Amalgamation Gen. amalgamation

Densification Densification

Interpolation Disjunction property

Undecidability

Modular CE

Hilbert system for FL Strong separation

Variants of frames

References

Given a frame $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\sqsubseteq}, \widetilde{W'})$ out of it.

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

we can construct a residuated frame $\mathbf{W} = (W, \circ, \varepsilon, \widetilde{\sqsubseteq}, W')$ out of it. We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus z / y$

Given a *frame* $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated,

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

Jenizen names

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames Amalgamation

Gen. amalgamation Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Given a *frame* $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\sqsubseteq}, \widetilde{W'})$ out of it.

We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames Amalgamation Gen. amalgamation Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Given a frame
$$\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$$
 which might not be residuated,
we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\sqsubseteq}, \widetilde{W'})$ out of it.

We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$

So we define: $w \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w \circ y \underline{\sqsubseteq} z$.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

FMP FEP

Combining frames

Amalgamation Gen. amalgamation

Densification Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

Given a *frame* $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ out of it.

- We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus \langle z / \!\!/ y$ $:= (x, z, y) \in W \times W' \times W =: W'$
- So we define: $w \sqsubseteq (x, z, y)$ iff $x \circ w \circ y \sqsubseteq z$.

We now check if the new frame is residuated: $w_1 \circ w_2 \square (x, z, y)$ iff $x \circ w_1 \circ w_2 \circ y \square z$ iff $w_1 \widetilde{\sqsubseteq} (x, z, w_2 \circ y)$

Substructural logics Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Given a *frame* $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\subseteq}, \widetilde{W'})$ out of it.

We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || z /| y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$

So we define: $w \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w \circ y \sqsubseteq z$.

We now check if the new frame is residuated: $w_1 \circ w_2 \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w_1 \circ w_2 \circ y \sqsubseteq z$ iff $w_1 \widetilde{\sqsubseteq}(x, z, w_2 \circ y) = (x, z, y) // w_2$

Substructural logics Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Given a *frame* $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\subseteq}, \widetilde{W'})$ out of it.

We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || z /| y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$

So we define: $w \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w \circ y \sqsubseteq z$.

We now check if the new frame is residuated: $w_1 \circ w_2 \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w_1 \circ w_2 \circ y \sqsubseteq z$ iff $w_1 \widetilde{\sqsubseteq}(x, z, w_2 \circ y) = (x, z, y) // w_2$

iff $w_2 \sqsubseteq (x \circ w_1, z)$

Nick Galatos, SYSMICS, Chapman, September 2018

Substructural logics Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Given a frame $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\subseteq}, \widetilde{W'})$ out of it.

We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || z /| y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$

So we define: $w \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w \circ y \sqsubseteq z$.

We now check if the new frame is residuated:

 $w_1 \circ w_2 \widetilde{\sqsubseteq} (x, z, y) \quad \text{iff } x \circ w_1 \circ w_2 \circ y \sqsubseteq z \\ \text{iff } w_1 \widetilde{\sqsubseteq} (x, z, w_2 \circ y) \quad = (x, z, y) \not| w_2 \\ \text{iff } w_2 \widetilde{\sqsubseteq} (x \circ w_1, z) \quad = w_1 \setminus (x, z, y) \end{cases}$

Substructural logics Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Given a frame $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\subseteq}, \widetilde{W'})$ out of it.

We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || z /| y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$

So we define: $w \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w \circ y \sqsubseteq z$.

We now check if the new frame is residuated:

 $w_1 \circ w_2 \widetilde{\sqsubseteq} (x, z, y) \quad \text{iff } x \circ w_1 \circ w_2 \circ y \sqsubseteq z \\ \text{iff } w_1 \widetilde{\sqsubseteq} (x, z, w_2 \circ y) \quad = (x, z, y) \not| w_2 \\ \text{iff } w_2 \widetilde{\sqsubseteq} (x \circ w_1, z) \quad = w_1 \setminus (x, z, y) \end{cases}$

Substructural logics

Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a *frame* $\mathbf{W} = (W, \circ, \varepsilon, \sqsubseteq, W')$ which might not be residuated, we can construct a residuated frame $\widetilde{\mathbf{W}} = (W, \circ, \varepsilon, \widecheck{\sqsubseteq}, \widetilde{W'})$ out of it.

- We have $x \circ w \circ y \sqsubseteq z$ iff $w \sqsubseteq x \setminus || y$:= $(x, z, y) \in W \times W' \times W =: \widetilde{W'}$
- So we define: $w \widetilde{\sqsubseteq}(x, z, y)$ iff $x \circ w \circ y \sqsubseteq z$.

We now check if the new frame is residuated:

$$w_1 \circ w_2 \widetilde{\sqsubseteq} (x, z, y) \quad \text{iff } x \circ w_1 \circ w_2 \circ y \sqsubseteq z \\ \text{iff } w_1 \widetilde{\sqsubseteq} (x, z, w_2 \circ y) \quad = (x, z, y) \not \mid w_2 \\ \text{iff } w_2 \widetilde{\sqsubseteq} (x \circ w_1, z) \quad = w_1 \setminus (x, z, y) \end{cases}$$

Often we will write \sqsubseteq for the extension $\widetilde{\sqsubseteq}$.

Embedding of subreducts using preframes

To a partially-odrered semigroup $\mathbf{A} = (A, \leq, \cdot)$, we associate the Gentzen pre-frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A_{\varepsilon}, \cdot, \sqsubseteq, A)$, $A_{\varepsilon} = A \cup \{\varepsilon\}$ for $\varepsilon \notin A$, where $a \circ b = ab$ for $a, b \in A$ and $\varepsilon \circ a = a \circ \varepsilon = a$. Also,

 $x \Box a \text{ iff } x \leq a.$

This is an A-frame, where the maps from A are $a \mapsto a$ and $a \mapsto (\varepsilon, a, \varepsilon).$

Substructural logics Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Embedding of subreducts using preframes

To a partially-odrered semigroup $\mathbf{A} = (A, \leq, \cdot)$, we associate the Gentzen pre-frame $(\mathbf{W}_{\mathbf{A}}, \mathbf{A})$, where $\mathbf{W}_{\mathbf{A}} = (A_{\varepsilon}, \cdot, \sqsubseteq, A)$, $A_{\varepsilon} = A \cup \{\varepsilon\}$ for $\varepsilon \notin A$, where $a \circ b = ab$ for $a, b \in A$ and $\varepsilon \circ a = a \circ \varepsilon = a$. Also,

$x \sqsubseteq a \text{ iff } x \leq a.$

This is an **A**-frame, where the maps from A are $a \mapsto a$ and $a \mapsto (\varepsilon, a, \varepsilon)$.

Theorem. The map $x \mapsto x^{\triangleleft}$ is an embedding of A into W_A^+ . If A has a multiplicative unit then the embedding preserves it. The embedding preserves exising joins $\bigvee X$ for which $y(\bigvee X)z = \bigvee (yx_iz)$ for all $y, z \in A$. The embedding preserves all existing residuals.

Strong separation

Examples of frames: FL

Based on the Gentzen system FL, we define the residuated frame

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts

using preframes

Examples of frames: FL FL FMP FEP

Combining frames

Amalgamation Gen. amalgamation

Densification

Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

 W_{FL} based on the preframe:

Examples of frames: FL

Substructural logics Lattice representation **Residuated frames** Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Based on the Gentzen system FL, we define the residuated frame W_{FL} based on the preframe:

 $\blacksquare \quad (W, \circ, \varepsilon) \text{ is the free monoid over the set } Fm \text{ of all formulas}$
Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL

Substructural logics

Strong separation

Variants of frames

References

Based on the Gentzen system \mathbf{FL} , we define the residuated frame $\mathbf{W_{FL}}$ based on the preframe:

 $\begin{array}{ll} & (W,\circ,\varepsilon) \text{ is the free monoid over the set } Fm \text{ of all formulas} \\ & W'=Fm \text{, and} \end{array}$

Based on the Gentzen system FL, we define the residuated frame

 (W, \circ, ε) is the free monoid over the set Fm of all formulas

 W_{FL} based on the preframe:

W' = Fm, and

 $\blacksquare \quad x \ N \ a \ \text{iff} \vdash_{\mathbf{FL}} x \ \Rightarrow \ a.$

Substructural logics Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

It is easy to see that $(\mathbf{W}_{\mathbf{FL}}, \mathbf{Fm})$ is a Gentzen frame. For example, $\frac{x \sqsubseteq a \quad b \sqsubseteq z}{a \setminus b \sqsubset x \land x} (\backslash \mathsf{L})$

Where $a, b, c \in Fm$, $x, u, v \in W = Fm^*$, $z \in W \times Fm \times W$.

Residuated frames Based on the Gentzen system **FL**, we define the residuated frame Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts (W, \circ, ε) is the free monoid over the set Fm of all formulas Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP**

Substructural logics

Lattice representation

Combining frames Amalgamation Gen. amalgamation Densification Densification

Disjunction property Undecidability Modular CE

Variants of frames

Hilbert system for FL Strong separation

References

Interpolation

Nick Galatos, SYSMICS, Chapman, September 2018

 W_{FL} based on the preframe:

W' = Fm, and

consider

 $\blacksquare \quad x \ N \ a \ \text{iff} \vdash_{\mathbf{FL}} x \ \Rightarrow \ a.$

$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{x \circ (a \backslash b) \sqsubset z}$

Based on the Gentzen system \mathbf{FL} , we define the residuated frame W_{FL} based on the preframe:

- (W, \circ, ε) is the free monoid over the set Fm of all formulas \blacksquare W' = Fm, and
- $\blacksquare \quad x \ N \ a \ \text{iff} \vdash_{\mathbf{FL}} x \ \Rightarrow \ a.$

It is easy to see that $(\mathbf{W}_{\mathbf{FL}}, \mathbf{Fm})$ is a Gentzen frame. For example, consider $\frac{x \sqsubseteq a \quad b \sqsubseteq z}{a \backslash b \sqsubset x \ \| \ z} \ (\backslash \mathsf{L})$

Where
$$a,b,c\in Fm$$
, $x,u,v\in W=Fm^*$, $z\in W imes Fm imes W$. The rule can be rewritten as

La

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification

Strong separation Variants of frames

Hilbert system for FL

Disjunction property

References

Densification Interpolation

Undecidability Modular CE

Based on the Gentzen system \mathbf{FL} , we define the residuated frame

 (W, \circ, ε) is the free monoid over the set Fm of all formulas W' = Fm, and

 $\blacksquare \quad x \ N \ a \ \text{iff} \vdash_{\mathbf{FL}} x \ \Rightarrow \ a.$

 W_{FL} based on the preframe:

It is easy to see that $(\mathbf{W}_{\mathbf{FL}}, \mathbf{Fm})$ is a Gentzen frame. For example, consider

$$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{a \backslash b \sqsubseteq x \ \backslash z} \ (\backslash \mathsf{L})$$

Where $a, b, c \in Fm$, $x, u, v \in W = Fm^*$, $z \in W \times Fm \times W$. The rule can be rewritten as

$$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{x \circ (a \backslash b) \sqsubseteq z} \qquad \frac{x \sqsubseteq a \quad b \sqsubseteq (v, c, u)}{x \circ (a \backslash b) \sqsubseteq (v, c, u)}$$

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

Based on the Gentzen system \mathbf{FL} , we define the residuated frame

■ (W, \circ, ε) is the free monoid over the set Fm of all formulas ■ W' = Fm, and

 $\blacksquare \quad x \ N \ a \ \text{iff} \vdash_{\mathbf{FL}} x \ \Rightarrow \ a.$

 W_{FL} based on the preframe:

It is easy to see that $(\mathbf{W_{FL}}, \mathbf{Fm})$ is a Gentzen frame. For example, consider

$$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{a \backslash b \sqsubseteq x \ \ z} \ (\backslash \mathsf{L})$$

Where $a, b, c \in Fm$, $x, u, v \in W = Fm^*$, $z \in W \times Fm \times W$. The rule can be rewritten as

$$\frac{x \sqsubseteq a \quad b \sqsubseteq z}{x \circ (a \setminus b) \sqsubseteq z} \qquad \frac{x \sqsubseteq a \quad b \sqsubseteq (v, c, u)}{x \circ (a \setminus b) \sqsubseteq (v, c, u)} \qquad \frac{x \sqsubseteq a \quad v \circ b \circ u \sqsubseteq c}{v \circ x \circ (a \setminus b) \circ u \sqsubseteq c}$$

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames

Amalgamation

Gen. amalgamation

Densification Densification

Interpolation

Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

FL

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes

Examples of frames: FL

FL

FL FMP FEP Combining frames Amalgamation Gen. amalgamation Densification Densification

Interpolation Disjunction property

Undecidability

Modular CE

Hilbert system for FL

Strong separation

Variants of frames

References

$$\frac{x \Rightarrow a \quad y \circ a \circ z \Rightarrow c}{y \circ x \circ z \Rightarrow c} \text{ (cut) } \qquad \frac{a \Rightarrow a}{a \Rightarrow a} \text{ (Id)}$$

$$\frac{y \circ a \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c} (\wedge L\ell) \quad \frac{y \circ b \circ z \Rightarrow c}{y \circ a \wedge b \circ z \Rightarrow c} (\wedge Lr) \quad \frac{x \Rightarrow a \quad x \Rightarrow b}{x \Rightarrow a \wedge b} (\wedge R)$$

$$\frac{y \circ a \circ z \Rightarrow c \quad y \circ b \circ z \Rightarrow c}{y \circ a \lor b \circ z \Rightarrow c} (\lor \mathsf{L}) \quad \frac{x \Rightarrow a}{x \Rightarrow a \lor b} (\lor \mathsf{R}\ell) \quad \frac{x \Rightarrow b}{x \Rightarrow a \lor b} (\lor \mathsf{R}r)$$

$$\frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ x \circ (a \setminus b) \circ z \Rightarrow c} (\setminus \mathsf{L}) \qquad \frac{a \circ x \Rightarrow b}{x \Rightarrow a \setminus b} (\setminus \mathsf{R})$$

$$\frac{x \Rightarrow a \quad y \circ b \circ z \Rightarrow c}{y \circ (b/a) \circ x \circ z \Rightarrow c} (/L) \qquad \frac{x \circ a \Rightarrow b}{x \Rightarrow b/a} (/R)$$

$$\frac{y \circ a \circ b \circ z \Rightarrow c}{y \circ a \cdot b \circ z \Rightarrow c} (\cdot \mathsf{L}) \qquad \frac{x \Rightarrow a \quad y \Rightarrow b}{x \circ y \Rightarrow a \cdot b} (\cdot \mathsf{R})$$
$$y \circ z \Rightarrow a \qquad (11)$$

$$\frac{\varepsilon}{y \circ 1 \circ z \Rightarrow a}$$
 (1L) $\frac{\varepsilon}{\varepsilon \Rightarrow 1}$ (1R)

where $a, b, c \in Fm$, $x, y, z \in Fm^*$.

Given a sequent s which is not provable in **FL** we construct a finite countermodel of it.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL

FL FMP

FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given a sequent s which is not provable in **FL** we construct a finite

countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Substructural logics Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL FMP **FEP** Combining frames Amalgamation Gen. amalgamation Densification

Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

Given a sequent s which is not provable in **FL** we construct a finite countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Even though s is not provable we consider all the sequents that appear in all failed proof attempts if s. We define s^{\uparrow} the set of pairs (w, (x, c, y)) in $W \times W'$ such that $x, w, y \Rightarrow c$ is one of those sequents.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

FMP

FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

- -

Given a sequent s which is not provable in \mathbf{FL} we construct a finite countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Even though s is not provable we consider all the sequents that appear in all failed proof attempts if s. We define s^{\uparrow} the set of pairs (w, (x, c, y)) in $W \times W'$ such that $x, w, y \Rightarrow c$ is one of those sequents.

We also define a new relation $\sqsubseteq_s = \widetilde{\sqsubseteq} \cup (s^{\uparrow})^c$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL

FMP FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given a sequent s which is not provable in \mathbf{FL} we construct a finite countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Even though s is not provable we consider all the sequents that appear in all failed proof attempts if s. We define s^{\uparrow} the set of pairs (w, (x, c, y)) in $W \times W'$ such that $x, w, y \Rightarrow c$ is one of those sequents.

We also define a new relation $\sqsubseteq_s = \widetilde{\sqsubseteq} \cup (s^{\uparrow})^c$. The resulting frame \mathbf{W}_s is residuated.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

FMP FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Given a sequent s which is not provable in \mathbf{FL} we construct a finite countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Even though s is not provable we consider all the sequents that appear in all failed proof attempts if s. We define s^{\uparrow} the set of pairs (w, (x, c, y)) in $W \times W'$ such that $x, w, y \Rightarrow c$ is one of those sequents.

We also define a new relation $\sqsubseteq_s = \widetilde{\sqsubseteq} \cup (s^{\uparrow})^c$. The resulting frame \mathbf{W}_s is residuated.

Using the finiteness of $(\sqsubseteq_s)^c$ we get that \mathbf{W}_s^+ is finite.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL

FMP FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Nick Galatos, SYSMICS, Chapman, September 2018

Lattice representation Residuated frames

Residuated frames Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

Substructural logics

FMP FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

Given a sequent s which is not provable in \mathbf{FL} we construct a finite countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Even though s is not provable we consider all the sequents that appear in all failed proof attempts if s. We define s^{\uparrow} the set of pairs (w, (x, c, y)) in $W \times W'$ such that $x, w, y \Rightarrow c$ is one of those sequents.

We also define a new relation $\sqsubseteq_s = \widetilde{\sqsubseteq} \cup (s^{\uparrow})^c$. The resulting frame \mathbf{W}_s is residuated.

Using the finiteness of $(\sqsubseteq_s)^c$ we get that \mathbf{W}_s^+ is finite. Moreover $(\mathbf{W}_s, \mathbf{Fm})$ is a cut-free Gentzen frame and s is not valid in \mathbf{W}_s^+ .

Corollary. The system \mathbf{FL} has the finite model property. The same holds for *reducing* simple extensions.

Given a sequent s which is not provable in \mathbf{FL} we construct a finite countermodel of it.

Recall the residuated frame W_{FL} based on $x \sqsubseteq a$ iff $x \Rightarrow a$ is provable in FL^{cf} .

Even though s is not provable we consider all the sequents that appear in all failed proof attempts if s. We define s^{\uparrow} the set of pairs (w, (x, c, y)) in $W \times W'$ such that $x, w, y \Rightarrow c$ is one of those sequents.

We also define a new relation $\sqsubseteq_s = \widetilde{\sqsubseteq} \cup (s^{\uparrow})^c$. The resulting frame \mathbf{W}_s is residuated.

Using the finiteness of $(\sqsubseteq_s)^c$ we get that \mathbf{W}_s^+ is finite. Moreover $(\mathbf{W}_s, \mathbf{Fm})$ is a cut-free Gentzen frame and s is not valid in \mathbf{W}_s^+ .

Corollary. The system **FL** has the finite model property. The same holds for *reducing* simple extensions. The corresponding varieties of residuated lattices are generated by their finite members.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL

FMP FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

Substructural logics

Lattice representation

Residuated frames

P) if Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

FMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts using preframes

Examples of frames: FL

FL FMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define \mathbf{W} based on the preframe

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations

Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts using preframes

Examples of frames: FL

FL FMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define ${f W}$ based on the preframe

• $(W, \cdot, 1)$ is the submonoid of \mathbf{A} generated by B,

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames Embedding of subreducts

using preframes

Examples of frames: FL FL

FMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define \mathbf{W} based on the preframe

(W, ⋅, 1) is the submonoid of A generated by B,
 W' = B, and

Substructural logics

Lattice representation

Residuated frames

Residuated frames

Simple equations Gentzen frames

DM-completions

Embedding of subreducts

Pre-frames

Embedding of subreducts

using preframes Examples of frames: FL

FL

FMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define \mathbf{W} based on the preframe

- $\blacksquare \quad (W,\cdot,1) \text{ is the submonoid of } \mathbf{A} \text{ generated by } B,$
- $\blacksquare \quad W' = B, \text{ and}$

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

FMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define \mathbf{W} based on the preframe

- $\blacksquare \quad (W,\cdot,1) \text{ is the submonoid of } \mathbf{A} \text{ generated by } B,$
- W' = B, and
- $x \sqsubseteq b \text{ by } x \leq_{\mathbf{A}} b.$

Theorem. Every variety of integral (alt., by commutative and knotted) RL's axiomatized by equations over $\{\vee, \cdot, 1\}$ has the FEP.

- $q: \mathbf{B}
 ightarrow \mathbf{W}^+$ is an embedding
- $\blacksquare \quad \mathbf{W}^+ \in \mathcal{V}$
- W⁺ is finite

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL EMP

FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define \mathbf{W} based on the preframe

- $\blacksquare \quad (W, \cdot, 1) \text{ is the submonoid of } \mathbf{A} \text{ generated by } B,$
- W' = B, and

Theorem. Every variety of integral (alt., by commutative and knotted) RL's axiomatized by equations over $\{\vee, \cdot, 1\}$ has the FEP.

- $\blacksquare \quad q: \mathbf{B} \to \mathbf{W}^+ \text{ is an embedding}$
- $\blacksquare \quad \mathbf{W}^+ \in \mathcal{V}$
- W⁺ is finite

Corollary. These varieties are generated as quasivarieties by their finite members.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL

FMP FEP

Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

A class of algebras \mathcal{K} has the *finite embeddability property (FEP)* if for every $\mathbf{A} \in \mathcal{K}$, every finite partial subalgebra \mathbf{B} of \mathbf{A} can be (partially) embedded in a finite $\mathbf{D} \in \mathcal{K}$.

We define \mathbf{W} based on the preframe

- $\blacksquare \quad (W,\cdot,1) \text{ is the submonoid of } \mathbf{A} \text{ generated by } B,$
- $\blacksquare \quad W' = B, \text{ and}$
- $x \sqsubseteq b \text{ by } x \leq_{\mathbf{A}} b.$

Theorem. Every variety of integral (alt., by commutative and knotted) RL's axiomatized by equations over $\{\vee, \cdot, 1\}$ has the FEP.

- \blacksquare $q: \mathbf{B} \to \mathbf{W}^+$ is an embedding
- $\blacksquare \quad \mathbf{W}^+ \in \mathcal{V}$
- W⁺ is finite

Corollary. These varieties are generated as quasivarieties by their finite members. The corresponding logics have the *strong finite model property*.

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

Substructural logics

Lattice representation Residuated frames **Residuated frames** Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP** FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

and also given relations

$$\sqsubseteq_{BC'} \subseteq B \times C'$$
 and $\sqsubseteq_{CB'} \subseteq C \times B'$,

Substructural logics Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP** FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

and also given relations

 $\sqsubseteq_{BC'} \subseteq B \times C'$ and $\sqsubseteq_{CB'} \subseteq C \times B'$,

we define the relation \sqsubseteq from $B \cup C$ to $B' \cup C'$ as $\sqsubseteq_B \cup \sqsubseteq_C \cup \sqsubseteq_{BC'} \cup \bigsqcup_{CB'}$.

	Substructural logics
_	Lattice representation
	Residuated frames
	Residuated frames
	Simple equations
	Gentzen frames
	DM-completions
	Embedding of subreducts
	Pre-frames
	Embedding of subreducts
	Using pretrames
	FED
	1 EI
	Combining frames
	Combining frames
	Combining frames Amalgamation Gen. amalgamation
	Combining frames Amalgamation Gen. amalgamation Densification
	Combining frames Amalgamation Gen. amalgamation Densification Densification
	Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation
	Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property
	Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability
	Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE
	Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL
	Combining frames Amalgamation Gen. amalgamation Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation
	Combining frames Amalgamation Gen. amalgamation Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames
	Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

and also given relations

 $\sqsubseteq_{BC'} \subseteq B \times C'$ and $\sqsubseteq_{CB'} \subseteq C \times B'$,

we define the relation \sqsubseteq from $B \cup C$ to $B' \cup C'$ as $\sqsubseteq_B \cup \sqsubseteq_C \cup \sqsubseteq_{BC'} \cup \bigsqcup_{CB'}$. We consider BC, the free commutative monoid generated by $B \cup C$, where $(bc) \circ (b'c') = (b \circ b')(c \circ c')$,

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

and also given relations

 $\sqsubseteq_{BC'} \subseteq B \times C'$ and $\sqsubseteq_{CB'} \subseteq C \times B'$,

we define the relation \sqsubseteq from $B \cup C$ to $B' \cup C'$ as $\sqsubseteq_B \cup \sqsubseteq_C \cup \sqsubseteq_{BC'} \cup \bigsqcup_{CB'}$. We consider BC, the free commutative monoid generated by $B \cup C$, where $(bc) \circ (b'c') = (b \circ b')(c \circ c')$, and we extend \sqsubseteq from BC to $B' \cup C'$:

 $bc \sqsubseteq b' \text{ iff } c \sqsubseteq b \setminus b'$

Variants of frames

Hilbert system for FL

Disjunction property

Substructural logics

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions

Pre-frames

FL FMP FEP

using preframes

Combining frames

Amalgamation Gen. amalgamation

Densification

Densification Interpolation

Undecidability Modular CE

Lattice representation

Embedding of subreducts

Embedding of subreducts

Examples of frames: FL

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

and also given relations

 $\sqsubseteq_{BC'} \subseteq B \times C'$ and $\sqsubseteq_{CB'} \subseteq C \times B'$,

we define the relation \sqsubseteq from $B \cup C$ to $B' \cup C'$ as $\sqsubseteq_B \cup \sqsubseteq_C \cup \sqsubseteq_{BC'} \cup \bigsqcup_{CB'}$. We consider BC, the free commutative monoid generated by $B \cup C$, where $(bc) \circ (b'c') = (b \circ b')(c \circ c')$, and we extend \sqsubseteq from BC to $B' \cup C'$:

 $bc \sqsubseteq b' \text{ iff } c \sqsubseteq b \setminus b' \text{ and } bc \sqsubseteq c' \text{ iff } b \sqsubseteq c \setminus c'.$

The resulting residuated frame obtained is denoted by $\mathbf{W}_B \star \mathbf{W}_C$.

Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames
Embedding of subreducts
using pretrames
Examples of frames: FL
FL
FMP
FEP
Combining frames
Amalgamation
Gen. amalgamation
Gen. amalgamation Densification
Gen. amalgamation Densification Densification
Gen. amalgamation Densification Densification Interpolation
Gen. amalgamation Densification Densification Interpolation Disjunction property
Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability
Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE
Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL
Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation
Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Substructural logics

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions

Pre-frames

FL FMP FEP

using preframes

Combining frames

Amalgamation Gen. amalgamation

Densification

Densification Interpolation

Undecidability Modular CE

Disjunction property

Hilbert system for FL

Strong separation

Variants of frames

References

Lattice representation

Embedding of subreducts

Embedding of subreducts

Examples of frames: FL

Given two commutative residuated frames

$$\mathbf{W}_B = (B, \circ, \varepsilon, \sqsubseteq_B, B')$$
 and $\mathbf{W}_C = (C, \circ, \varepsilon, \sqsubseteq_C, C')$,

and also given relations

 $\sqsubseteq_{BC'} \subseteq B \times C'$ and $\sqsubseteq_{CB'} \subseteq C \times B'$,

we define the relation \sqsubseteq from $B \cup C$ to $B' \cup C'$ as $\sqsubseteq_B \cup \sqsubseteq_C \cup \sqsubseteq_{BC'} \cup \sqsubseteq_{CB'}$. We consider BC, the free commutative monoid generated by $B \cup C$, where $(bc) \circ (b'c') = (b \circ b')(c \circ c')$, and we extend \sqsubseteq from BC to $B' \cup C'$:

 $bc \sqsubseteq b' \text{ iff } c \sqsubseteq b \setminus b' \text{ and } bc \sqsubseteq c' \text{ iff } b \sqsubseteq c \setminus c'.$

The resulting residuated frame obtained is denoted by $\mathbf{W}_B \star \mathbf{W}_C$.

We will give applications of this construction in proving:

- Amagamation (and related properties)
- Interpolation
- Densification

Substructural logics

Residuated frames

Residuated frames

Lattice representation

A class \mathcal{K} of similar algebras has the *amalgamation property* (AP), if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$, there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$ such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability

Modular CE Hilbert system for FL Strong separation

Variants of frames

Substructural logics

Lattice representation

Residuated frames

Simple equations Gentzen frames DM-completions

Embedding of subreducts

Pre-frames Embedding of subreducts

using preframes

Examples of frames: FL

FL FMP

FEP

Combining frames

Amalgamation

Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

A class \mathcal{K} of similar algebras has the *amalgamation property* (AP), if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$, there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$ such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Theorem. CRL has the AP; the same holds for its subvarieties CRL_n axiomatized by $x \le x^n$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames DM-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL FMP FEP Combining frames Amalgamation Gen. amalgamation

Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

A class
$$\mathcal{K}$$
 of similar algebras has the *amalgamation property* (AP), if
for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$,
there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$
such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Theorem. CRL has the AP; the same holds for its subvarieties CRL_n axiomatized by $x \le x^n$.

We consider the frames $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$ and $\mathbf{W}_C = (C, \cdot, 1, \leq, C)$, and as before we construct the residuated frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$. For that we need

$$\sqsubseteq_{BC} := \bigsqcup_B \circ f_B \circ (f_C)^{-1} \circ \bigsqcup_C \text{ and } \bigsqcup_{CB} = \bigsqcup_C \circ f_C \circ (f_B)^{-1} \circ \bigsqcup_B.$$

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

A class \mathcal{K} of similar algebras has the *amalgamation property* (AP), if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$, there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$ such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Theorem. CRL has the AP; the same holds for its subvarieties CRL_n axiomatized by $x < x^n$.

We consider the frames $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$ and $\mathbf{W}_{C} = (C, \cdot, 1, \leq, C)$, and as before we construct the residuated frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$. For that we need

 $\sqsubseteq_{BC} := \bigsqcup_B \circ f_B \circ (f_C)^{-1} \circ \bigsqcup_C \text{ and } \bigsqcup_{CB} = \bigsqcup_C \circ f_C \circ (f_B)^{-1} \circ \bigsqcup_B.$

We verify that W satisfies the rules associated with $x \leq x^n$. So, $\mathbf{W}^+ \in \mathsf{CRL}_n$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

A class \mathcal{K} of similar algebras has the *amalgamation property* (AP), if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$, there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$ such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Theorem. CRL has the AP; the same holds for its subvarieties CRL_n axiomatized by $x \leq x^n$.

We consider the frames $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$ and $\mathbf{W}_{C} = (C, \cdot, 1, \leq, C)$, and as before we construct the residuated frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$. For that we need

$$\sqsubseteq_{BC} := \sqsubseteq_B \circ f_B \circ (f_C)^{-1} \circ \sqsubseteq_C \text{ and } \sqsubseteq_{CB} = \sqsubseteq_C \circ f_C \circ (f_B)^{-1} \circ \sqsubseteq_B.$$

We verify that W satisfies the rules associated with $x \leq x^n$. So, $\mathbf{W}^+ \in \mathsf{CRL}_n$.

By taking the partial algebra $\mathbf{B} \cup \mathbf{C}$, we can prove that $(\mathbf{W}, \mathbf{B} \cup \mathbf{C})$ is a Gentzen frame.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

A class \mathcal{K} of similar algebras has the *amalgamation property* (AP), if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$, there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$ such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Theorem. CRL has the AP; the same holds for its subvarieties CRL_n axiomatized by $x \le x^n$.

We consider the frames $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$ and $\mathbf{W}_C = (C, \cdot, 1, \leq, C)$, and as before we construct the residuated frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$. For that we need

$$\sqsubseteq_{BC} := \sqsubseteq_B \circ f_B \circ (f_C)^{-1} \circ \sqsubseteq_C \text{ and } \sqsubseteq_{CB} = \sqsubseteq_C \circ f_C \circ (f_B)^{-1} \circ \sqsubseteq_B.$$

We verify that W satisfies the rules associated with $x \leq x^n$. So, $W^+ \in CRL_n$.

By taking the partial algebra $\mathbf{B} \cup \mathbf{C}$, we can prove that $(\mathbf{W}, \mathbf{B} \cup \mathbf{C})$ is a Gentzen frame. So there is an homomorphism $q : \mathbf{B} \cup \mathbf{C} \to \mathbf{W}^+$, which yields $f'_B : \mathbf{B} \to \mathbf{W}^+$ and $f'_C : \mathbf{C} \to \mathbf{W}^+$.
Amalgamation

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation

Variants of frames

References

A class \mathcal{K} of similar algebras has the *amalgamation property* (AP), if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings $f_B : \mathbf{A} \to \mathbf{B}$ and $f_C : \mathbf{A} \to \mathbf{C}$, there is a $\mathbf{D} \in \mathcal{K}$ and embeddings $f'_B : \mathbf{B} \to \mathbf{D}$ and $f'_C : \mathbf{C} \to \mathbf{D}$ such that $f'_B \circ f_B = f'_C \circ f_C$. [Single embedding $f' : \mathbf{B} \cup \mathbf{C} \to \mathbf{D}$.]

Theorem. CRL has the AP; the same holds for its subvarieties CRL_n axiomatized by $x \le x^n$.

We consider the frames $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$ and $\mathbf{W}_C = (C, \cdot, 1, \leq, C)$, and as before we construct the residuated frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$. For that we need

 $\sqsubseteq_{BC} := \sqsubseteq_B \circ f_B \circ (f_C)^{-1} \circ \sqsubseteq_C \text{ and } \sqsubseteq_{CB} = \sqsubseteq_C \circ f_C \circ (f_B)^{-1} \circ \sqsubseteq_B.$

We verify that W satisfies the rules associated with $x \leq x^n$. So, $W^+ \in CRL_n$.

By taking the partial algebra $\mathbf{B} \cup \mathbf{C}$, we can prove that $(\mathbf{W}, \mathbf{B} \cup \mathbf{C})$ is a Gentzen frame. So there is an homomorphism $q : \mathbf{B} \cup \mathbf{C} \to \mathbf{W}^+$, which yields $f'_B : \mathbf{B} \to \mathbf{W}^+$ and $f'_C : \mathbf{C} \to \mathbf{W}^+$. We can easily check that they are injective and they satisfy the commutation property.

Gen. amalgamation

Modifications of the AP are known as follows.

Transferable injections: f_B is assumed to be injective and f'_B is required to be injective.

Transferable surjections: f_B is assumed to be surjective and f'_B is required to be surjective.

The congruence extension property: f_B , f_C are assumed to be surjective and f'_B , f'_C are required to be surjective.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Gen. amalgamation

Modifications of the AP are known as follows.

Transferable injections: f_B is assumed to be injective and f'_B is required to be injective.

Transferable surjections: f_B is assumed to be surjective and f'_B is required to be surjective.

The congruence extension property: f_B , f_C are assumed to be surjective and f'_B , f'_C are required to be surjective.

The AP proof works in the same way!

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP** FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

An countable *RL*-chain is called *densifiable* if it can be embedded in a dense countable RL-chain.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

An countable RL-chain is called *densifiable* if it can be embedded in a dense countable RL-chain.

Theorem. Countable *CRL*-chains are densifiable.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

An countable RL-chain is called *densifiable* if it can be embedded in a dense countable RL-chain.

Theorem. Countable *CRL*-chains are densifiable.

It is enough to be able to perform *one-step densification*, namely given a countable CRL-chain **B** with a gap g < h, extend it to one where this is no longer a gap (namely there is a new point p with g).

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

An countable RL-chain is called *densifiable* if it can be embedded in a dense countable RL-chain.

Theorem. Countable *CRL*-chains are densifiable.

It is enough to be able to perform *one-step densification*, namely given a countable CRL-chain **B** with a gap g < h, extend it to one where this is no longer a gap (namely there is a new point p with g).

It suffuces to constuct a CRL-chain in which we can embed the partial algebra $\mathbf{B} \cup \{p\}$, where g .

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

An countable RL-chain is called *densifiable* if it can be embedded in a dense countable RL-chain.

Theorem. Countable *CRL*-chains are densifiable.

It is enough to be able to perform *one-step densification*, namely given a countable CRL-chain **B** with a gap g < h, extend it to one where this is no longer a gap (namely there is a new point p with g).

It suffuces to constuct a CRL-chain in which we can embed the partial algebra $\mathbf{B} \cup \{p\}$, where g .

It suffices to construct a residuated frame W from this data such that $(\mathbf{W}, \mathbf{B} \cup \{p\})$ is a Gentzen frame and \mathbf{W}^+ is a chain.

Substructural logics Lattice representation Residuated frames **Residuated frames** Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP** FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

We consider the residuated frame $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

We consider the residuated frame $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$. Also, we consider the (residuated) frame $\mathbf{W}_p = (p^*, \cdot, 1, \sqsubseteq_p, \{p\})$, where $p \notin B, p^* = \{p^n : n \in \mathbb{N}\}$ and \sqsubseteq_p is defined as follows:

 $1 \sqsubseteq_p p \text{ iff } 1 \leq g \text{ and } p^n \cdot p \sqsubseteq_p p \text{ iff } h^n \leq 1.$

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We consider the residuated frame $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$. Also, we consider the (residuated) frame $\mathbf{W}_p = (p^*, \cdot, 1, \sqsubseteq_p, \{p\})$, where $p \notin B$, $p^* = \{p^n : n \in \mathbb{N}\}$ and \sqsubseteq_p is defined as follows:

 $1 \sqsubseteq_p p \text{ iff } 1 \leq g \text{ and } p^n \cdot p \sqsubseteq_p p \text{ iff } h^n \leq 1.$

We construct the frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_p$, where \sqsubseteq_{Bp} and \sqsubseteq_{pB} are defined as follows:

 $b \sqsubseteq_{Bp} p$ iff $b \le g$ and $p^n \sqsubseteq_{pB} b$ iff $h^n \le b$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We consider the residuated frame $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$. Also, we consider the (residuated) frame $\mathbf{W}_p = (p^*, \cdot, 1, \sqsubseteq_p, \{p\})$, where $p \notin B$, $p^* = \{p^n : n \in \mathbb{N}\}$ and \sqsubseteq_p is defined as follows:

 $1 \sqsubseteq_p p \text{ iff } 1 \leq g \text{ and } p^n \cdot p \sqsubseteq_p p \text{ iff } h^n \leq 1.$

We construct the frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_p$, where \sqsubseteq_{Bp} and \sqsubseteq_{pB} are defined as follows:

 $b \sqsubseteq_{Bp} p$ iff $b \le g$ and $p^n \sqsubseteq_{pB} b$ iff $h^n \le b$.

 \mathbf{W}^+ is a chain: basic closed elements $\{b\}^{\triangleleft}$ and $\{b \mid p\}^{\triangleleft}$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We consider the residuated frame $\mathbf{W}_B = (B, \cdot, 1, \leq, B)$. Also, we consider the (residuated) frame $\mathbf{W}_p = (p^*, \cdot, 1, \sqsubseteq_p, \{p\})$, where $p \notin B$, $p^* = \{p^n : n \in \mathbb{N}\}$ and \sqsubseteq_p is defined as follows:

 $1 \sqsubseteq_p p \text{ iff } 1 \leq g \text{ and } p^n \cdot p \sqsubseteq_p p \text{ iff } h^n \leq 1.$

We construct the frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_p$, where \sqsubseteq_{Bp} and \sqsubseteq_{pB} are defined as follows:

 $b \sqsubseteq_{Bp} p$ iff $b \le g$ and $p^n \sqsubseteq_{pB} b$ iff $h^n \le b$.

 \mathbf{W}^+ is a chain: basic closed elements $\{b\}^{\triangleleft}$ and $\{b \setminus p\}^{\triangleleft}$.

We show that $(\mathbf{W}, \mathbf{A} \cup \{p\})$ is a Gentzen frame, so $q : \mathbf{A} \cup \{p\} \to \mathbf{W}^+$ is an embedding and q(p) resolves the gap g < h.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \psi$, then there is a χ such that $\blacksquare \vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \chi$ and $\vdash_{\mathbf{FL}_{\mathbf{e}}} \chi \rightarrow \psi$

 $var(\chi) \subseteq var(\phi) \cap var(\psi).$

Nick Galatos, SYSMICS, Chapman, September 2018

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \psi$, then there is a χ such that $\models_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \chi$ and $\vdash_{\mathbf{FL}_{\mathbf{e}}} \chi \rightarrow \psi$ $= var(\chi) \subseteq var(\phi) \cap var(\psi).$

Let $B = Fm(var(\phi))$ and we consider the residuated frame \mathbf{W}_B based on the preframe with $W_B = B^*$, $W'_B = B$ and $x \sqsubseteq_B b$ iff $x \Rightarrow b$ is provable. Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \psi$, then there is a χ such that $\blacksquare \vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \chi$ and $\vdash_{\mathbf{FL}_{\mathbf{e}}} \chi \rightarrow \psi$

• $var(\chi) \subseteq var(\phi) \cap var(\psi)$.

Let $B = Fm(var(\phi))$ and we consider the residuated frame \mathbf{W}_B based on the preframe with $W_B = B^*$, $W'_B = B$ and $x \sqsubseteq_B b$ iff $x \Rightarrow b$ is provable. Likewise for $C = Fm(var(\psi))$ we obtain the frame \mathbf{W}_C . Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \psi$, then there is a χ such that $\models_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \chi$ and $\vdash_{\mathbf{FL}_{\mathbf{e}}} \chi \rightarrow \psi$ $= var(\chi) \subseteq var(\phi) \cap var(\psi)$.

Let $B = Fm(var(\phi))$ and we consider the residuated frame \mathbf{W}_B based on the preframe with $W_B = B^*$, $W'_B = B$ and $x \sqsubseteq_B b$ iff $x \Rightarrow b$ is provable. Likewise for $C = Fm(var(\psi))$ we obtain the frame \mathbf{W}_C . We then construct the frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$ as in the proof of AP, where $A = Fm(var(\chi))$.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \psi$, then there is a χ such that $\Vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \chi$ and $\vdash_{\mathbf{FL}_{\mathbf{e}}} \chi \rightarrow \psi$ $\qquad var(\chi) \subseteq var(\phi) \cap var(\psi).$

Let $B = Fm(var(\phi))$ and we consider the residuated frame \mathbf{W}_B based on the preframe with $W_B = B^*$, $W'_B = B$ and $x \sqsubseteq_B b$ iff $x \Rightarrow b$ is provable. Likewise for $C = Fm(var(\psi))$ we obtain the frame \mathbf{W}_C . We then construct the frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$ as in the proof of AP, where $A = Fm(var(\chi))$.

We prove that $(\mathbf{W}, \mathbf{B} \cup \mathbf{C})$ is a cut-free Gentzen frame.

Substructural logics

Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames
Embedding of subreducts
using preframes
Examples of frames: FL
FL
FMP
FEP
Combining frames
Amalgamation
Gen. amalgamation
Densification

Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Craig interpolation property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \rightarrow \psi$, then there is a χ such that $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \to \chi \text{ and } \vdash_{\mathbf{FL}_{\mathbf{e}}} \chi \to \psi$ $var(\chi) \subseteq var(\phi) \cap var(\psi).$

Let $B = Fm(var(\phi))$ and we consider the residuated frame \mathbf{W}_B based on the preframe with $W_B = B^*$, $W'_B = B$ and $x \sqsubseteq_B b$ iff $x \Rightarrow b$ is provable. Likewise for $C = Fm(var(\psi))$ we obtain the frame \mathbf{W}_C . We then construct the frame $\mathbf{W} = \mathbf{W}_B \star \mathbf{W}_C$ as in the proof of AP, where $A = Fm(var(\chi))$.

We prove that $(\mathbf{W}, \mathbf{B} \cup \mathbf{C})$ is a cut-free Gentzen frame.

Corollary. If $\vdash_{\mathbf{FL}_{\mathbf{e}}} x \Rightarrow d$, then $x \sqsubseteq d$. It follows that $\mathbf{FL}_{\mathbf{e}}$ has the IP.

Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreduct
Pre-frames
Embedding of subreduct
using pretrames
Examples of frames: FL
FL
FMP
FEP
Combining frames
Amalgamation
Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability
Modular CE
Hilbert system for FL
Strong separation
Variants of frames

Substructural logics

Theorem. FL_e has the Disjunction property, i.e. if $\vdash_{\mathbf{FL}_{e}} \phi \lor \psi$, then $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi$ or $\vdash_{\mathbf{FL}_{\mathbf{e}}} \psi$.

Substructural logics

Lattice representation
Residuated frames
Residuated frames
Simple equations
Gentzen frames
DM-completions
Embedding of subreducts
Pre-frames
Embedding of subreducts
using preframes
Examples of frames: FL
FL
FMP
FEP
Combining frames
Amalgamation
Gen. amalgamation
Densification
Densification
Interpolation
Disjunction property
Undecidability

Modular CE Hilbert system for FL Strong separation

Variants of frames

References

Theorem. FL_e has the Disjunction property, i.e. if $\vdash_{\mathbf{FL}_{e}} \phi \lor \psi$, then $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi$ or $\vdash_{\mathbf{FL}_{\mathbf{e}}} \psi$.

Define a preframe with $W = Fm^*$, $W' = Fm \times Fm$ and $x \sqsubseteq (a, b)$ iff

$$\bullet \quad \text{if } x \neq \varepsilon \text{, then } \vdash_{\mathbf{FL}_{\mathbf{e}}} x \Rightarrow a \lor b$$

In if
$$x = \varepsilon$$
, then $\vdash_{\mathbf{FL}_{e}} a$ or $\vdash_{\mathbf{FL}_{e}} b$.

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Disjunction property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \lor \psi$, then $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi$ or $\vdash_{\mathbf{FL}_{\mathbf{e}}} \psi$.

Define a preframe with $W = Fm^*$, $W' = Fm \times Fm$ and $x \sqsubseteq (a, b)$ iff

if $x \neq \varepsilon$, then $\vdash_{\mathbf{FL}_{e}} x \Rightarrow a \lor b$ if $x = \varepsilon$, then $\vdash_{\mathbf{FL}_{e}} a$ or $\vdash_{\mathbf{FL}_{e}} b$.

The corresponding algebraic property is: For $\mathbf{A} \in \mathcal{K}$, there is a $\mathbf{D} \in \mathcal{K}$ and an epimorphism $f : \mathbf{D} \to \mathbf{A}$ such that if $1 \leq_{\mathbf{D}} a \lor b$, then $1 \leq_{\mathbf{A}} f(a)$ or $1 \leq_{\mathbf{A}} f(b)$.

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Theorem. $\mathbf{FL}_{\mathbf{e}}$ has the Disjunction property, i.e. if $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi \lor \psi$, then $\vdash_{\mathbf{FL}_{\mathbf{e}}} \phi$ or $\vdash_{\mathbf{FL}_{\mathbf{e}}} \psi$.

Define a preframe with $W = Fm^*$, $W' = Fm \times Fm$ and $x \sqsubseteq (a, b)$ iff

if $x \neq \varepsilon$, then $\vdash_{\mathbf{FL}_{e}} x \Rightarrow a \lor b$ if $x = \varepsilon$, then $\vdash_{\mathbf{FL}_{e}} a$ or $\vdash_{\mathbf{FL}_{e}} b$.

The corresponding algebraic property is: For $\mathbf{A} \in \mathcal{K}$, there is a $\mathbf{D} \in \mathcal{K}$ and an epimorphism $f : \mathbf{D} \to \mathbf{A}$ such that if $1 \leq_{\mathbf{D}} a \lor b$, then $1 \leq_{\mathbf{A}} f(a)$ or $1 \leq_{\mathbf{A}} f(b)$.

This property holds for all subvarieties of CRL axiomatized with equations over $\{\lor, \cdot, 1\}$.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively

 n_1, n_2, n_3 .

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively

 n_1, n_2, n_3 .

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively n_1, n_2, n_3 .

We let W and W' be the set of all such words, and we define $u \sqsubseteq v$ iff the configuations corresponding to the word uv leads to q_f via a computation of the machine.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively n_1, n_2, n_3 .

We let W and W' be the set of all such words, and we define $u \sqsubseteq v$ iff the configuations corresponding to the word uv leads to q_f via a computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively n_1, n_2, n_3 .

We let W and W' be the set of all such words, and we define $u \sqsubseteq v$ iff the configuations corresponding to the word uv leads to q_f via a computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

It is known that the subvarieties of RL axiomatized by $x \leq x^n$ have undecidable word problem, but their commutative versions have the FEP.

Substructural logics

Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively n_1, n_2, n_3 .

We let W and W' be the set of all such words, and we define $u \sqsubseteq v$ iff the configuations corresponding to the word uv leads to q_f via a computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

It is known that the subvarieties of RL axiomatized by $x \le x^n$ have undecidable word problem, but their commutative versions have the FEP.

We can construct *commutative* varieties with undecidable (or not primitive-recursively decidable) word problem: for example axiomatized by: $x \le x^2 \lor x^3$.

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Substructural logics

Residuated frames

Residuated frames Simple equations

Gentzen frames

DM-completions

using preframes

Combining frames Amalgamation

Gen. amalgamation

Disjunction property

Hilbert system for FL Strong separation

Variants of frames

References

Densification

Densification

Interpolation

Undecidability Modular CE

Pre-frames

FL

FMP

FEP

Embedding of subreducts

Embedding of subreducts

Examples of frames: FL

Lattice representation

Given a 3-counter machine the commutative monoid word $q_i r_1^{n_1} r_2^{n_2} r_3^{n_3}$ represents the configuration where the machine is at state q_i and the contents of the three registers are respectively n_1, n_2, n_3 .

We let W and W' be the set of all such words, and we define $u \sqsubseteq v$ iff the configuations corresponding to the word uv leads to q_f via a computation of the machine.

The resulting frame is used to prove the correctness of the encoding.

It is known that the subvarieties of RL axiomatized by $x \leq x^n$ have undecidable word problem, but their commutative versions have the FEP.

We can construct *commutative* varieties with undecidable (or not primitive-recursively decidable) word problem: for example axiomatized by: $x \le x^2 \lor x^3$.

(An intermediate machine allows us to convert to powers of a carefully chosen integer K, so that the simple equation will not affect the computation of the machine.)

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP** FEP Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Given a set R of simple rules, we consider the system \mathbf{FL}_R , the expansion by these rules.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a set R of simple rules, we consider the system \mathbf{FL}_R , the expansion by these rules.

Also we call set S of sequents *elementary* if it consists of atomic/variable formulas and is closed under cuts: if S contains $x \Rightarrow p$ and $y, p, z \Rightarrow q$, where p is a variable, it also contains $y, x, z \Rightarrow q$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a set R of simple rules, we consider the system \mathbf{FL}_R , the expansion by these rules.

Also we call set S of sequents *elementary* if it consists of atomic/variable formulas and is closed under cuts: if S contains $x \Rightarrow p$ and $y, p, z \Rightarrow q$, where p is a variable, it also contains $y, x, z \Rightarrow q$.

We show that \mathbf{FL}_R admits *modular cut-elimination*: for any elementary set S and a sequent s, if s is derivable from S, then it is also cut-free derivable from S.

Substructural logics

Lattice representation Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a set R of simple rules, we consider the system \mathbf{FL}_R , the expansion by these rules.

Also we call set S of sequents *elementary* if it consists of atomic/variable formulas and is closed under cuts: if S contains $x \Rightarrow p$ and $y, p, z \Rightarrow q$, where p is a variable, it also contains $y, x, z \Rightarrow q$.

We show that \mathbf{FL}_R admits *modular cut-elimination*: for any elementary set S and a sequent s, if s is derivable from S, then it is also cut-free derivable from S.

We to obtain the [preframe \mathbf{W} as we modify \sqsubseteq as follows:

 $x \sqsubseteq a$ iff $x \Rightarrow a$ is cut-free derivable from S in \mathbf{FL}_R .

Substructural logics

Lattice representation

Residuated frames Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

Given a set R of simple rules, we consider the system \mathbf{FL}_R , the expansion by these rules.

Also we call set S of sequents *elementary* if it consists of atomic/variable formulas and is closed under cuts: if S contains $x \Rightarrow p$ and $y, p, z \Rightarrow q$, where p is a variable, it also contains $y, x, z \Rightarrow q$.

We show that \mathbf{FL}_R admits *modular cut-elimination*: for any elementary set S and a sequent s, if s is derivable from S, then it is also cut-free derivable from S.

We to obtain the [preframe \mathbf{W} as we modify \sqsubseteq as follows:

 $x \sqsubseteq a$ iff $x \Rightarrow a$ is cut-free derivable from S in \mathbf{FL}_R .

Now $h : \mathbf{Fm} \to \mathbf{W}^+$ is the homomorphism extending $p \mapsto q(\{p\} \cup \{x : (x \Rightarrow p) \in S\}).$

Hilbert system for FL

$aackslash a rac{a \ aackslash b}{b} \ (aackslash b)ackslash b$	$\left[(c \backslash a) \backslash (c \backslash b) ight] = rac{a \backslash b}{(b \backslash c) \backslash (a \lor c)}$	$\frac{a}{\langle c \rangle} \underbrace{a \\ (a \\ b) \\ b}$
aackslash[(b/a)ackslashbolb]	$[((a \setminus b)/c)] \setminus [a \setminus (b/c)]$	$\frac{b\backslash a}{a/b}$
$(a \wedge b) ackslash a (a \wedge b) ackslash b$	$rac{a b}{a \wedge b} \qquad [(a ackslash b) \wedge (a ackslash b)]$	$c)] \setminus [a \setminus (b \land c)] $ $c)] \setminus [a \setminus (b \land c)] $ $c)] \land [a \land (b \land c)] $ $c)] \land [a \land (b \land c)] $ $c)] \land [a \land (b \land c)] $ $c)] \land (b \land c)] $ $c)] \land (c)] $ $c)] (c)] $ $c)] (c)] $ $c)] (c)] $ $c)] (c)] (c)] $ $c)] (c)] (c)] (c)] $ $c)] (c)] (c)] $ $c)] (c)] (c)] (c)] $ $c)] (c)] (c)] (c)] (c)] (c)] (c)] (c)] ($
$aackslash(a \lor b)$	$b \backslash (a \lor b) \qquad \qquad \frac{a \backslash}{(a)}$	$\frac{c b \setminus c}{\lor \ b) \setminus c}$ Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation
$backslash(aackslash ab) \qquad [backslash(aackslash c)]ackslash$	$(ab \backslash c) \qquad 1 \qquad 1 \backslash (a \backslash a)$	$a \setminus (1 \setminus a)$

Substructural logics
We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames

References

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by $\mathcal{K}\mathbf{HL}$ its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$. For a set of formulas $B \cup \{c\}$ over \mathcal{K} , we let $\mathbf{S}_{\mathcal{K}}$ be the partial

subalgebra of $\mathbf{Fm}_{\mathcal{K}}$ of all *subformulas* of $B \cup \{c\}$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$. For a set of formulas $B \cup \{c\}$ over \mathcal{K} , we let $\mathbf{S}_{\mathcal{K}}$ be the partial subalgebra of $\mathbf{Fm}_{\mathcal{K}}$ of all *subformulas* of $B \cup \{c\}$. Consider the preframe W is the free monoid over $\mathbf{S}_{\mathcal{K}}$, $W' = S_{\mathcal{K}}$ and where $x \sqsubseteq a$ iff $B \vdash_{\mathcal{K}\mathbf{HL}} \phi_{\mathcal{K}}(x \Rightarrow a)$; here $\phi_{\mathcal{K}}$ is an apporpriate transformation from sequents to \mathcal{K} -formulas.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$. For a set of formulas $B \cup \{c\}$ over \mathcal{K} , we let $\mathbf{S}_{\mathcal{K}}$ be the partial subalgebra of $\mathbf{Fm}_{\mathcal{K}}$ of all *subformulas* of $B \cup \{c\}$. Consider the preframe W is the free monoid over $\mathbf{S}_{\mathcal{K}}$, $W' = S_{\mathcal{K}}$ and where $x \sqsubseteq a$ iff $B \vdash_{\mathcal{K}\mathbf{HL}} \phi_{\mathcal{K}}(x \Rightarrow a)$; here $\phi_{\mathcal{K}}$ is an apporpriate transformation from sequents to \mathcal{K} -formulas.

If $B \vdash_{\mathbf{HL}} c$, then $s[B] \vdash_{\mathbf{FL}} s(c)$. We have $\{1 \leq b \mid b \in B\} \models_{\mathbf{W}^+} 1 \leq c$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$. For a set of formulas $B \cup \{c\}$ over \mathcal{K} , we let $\mathbf{S}_{\mathcal{K}}$ be the partial subalgebra of $\mathbf{Fm}_{\mathcal{K}}$ of all *subformulas* of $B \cup \{c\}$. Consider the preframe W is the free monoid over $\mathbf{S}_{\mathcal{K}}$, $W' = S_{\mathcal{K}}$ and where $x \sqsubseteq a$ iff $B \vdash_{\mathcal{K}\mathbf{HL}} \phi_{\mathcal{K}}(x \Rightarrow a)$; here $\phi_{\mathcal{K}}$ is an apporpriate transformation from

sequents to \mathcal{K} -formulas.

If $B \vdash_{\mathbf{HL}} c$, then $s[B] \vdash_{\mathbf{FL}} s(c)$. We have $\{1 \leq b \mid b \in B\} \models_{\mathbf{W}^+} 1 \leq c$. Let $h : \mathbf{Fm}_{\mathcal{L}} \to \mathbf{W}^+$ be the homomorphism that extends the identity assingment $p \mapsto q(p)$. So, if $h(1) \subseteq_{\mathbf{W}^+} h(b)$, for all $b \in B$, then $h(1) \subseteq_{\mathbf{W}^+} h(c)$,

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP** Combining frames Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$. For a set of formulas $B \cup \{c\}$ over \mathcal{K} , we let $\mathbf{S}_{\mathcal{K}}$ be the partial subalgebra of $\mathbf{Fm}_{\mathcal{K}}$ of all *subformulas* of $B \cup \{c\}$. Consider the

preframe W is the free monoid over $\mathbf{S}_{\mathcal{K}}$, $W' = S_{\mathcal{K}}$ and where $x \sqsubseteq a$ iff $B \vdash_{\mathcal{K}\mathbf{HL}} \phi_{\mathcal{K}}(x \Rightarrow a)$; here $\phi_{\mathcal{K}}$ is an apporpriate transformation from sequents to \mathcal{K} -formulas.

If $B \vdash_{\mathbf{HL}} c$, then $s[B] \vdash_{\mathbf{FL}} s(c)$. We have $\{1 \leq b \mid b \in B\} \models_{\mathbf{W}^+} 1 \leq c$. Let $h : \mathbf{Fm}_{\mathcal{L}} \to \mathbf{W}^+$ be the homomorphism that extends the identity assingment $p \mapsto q(p)$. So, if $h(1) \subseteq_{\mathbf{W}^+} h(b)$, for all $b \in B$, then $h(1) \subseteq_{\mathbf{W}^+} h(c)$, Since h is a \mathcal{L} -homomorphism we have $h(1) = \gamma(\varepsilon)$. Moreover, $(\mathbf{W}, \mathbf{S}_{\mathcal{K}})$ is a Gentzen frame, so for every subformula d of $B \cup \{c\}$, $h(d) = \{d\}^{\triangleleft}$.

Substructural logics

Lattice representation

Residuated frames

Residuated frames Simple equations Gentzen frames **DM**-completions Embedding of subreducts Pre-frames Embedding of subreducts using preframes Examples of frames: FL FL **FMP FEP Combining frames** Amalgamation Gen. amalgamation Densification Densification Interpolation Disjunction property Undecidability Modular CE Hilbert system for FL Strong separation Variants of frames References

We define also an appropriate Hilbert system **HL** and for every sublanguage \mathcal{K} of \mathcal{L} that contains the connective \backslash , we denote by \mathcal{K} **HL** its \mathcal{K} -fragment. We establish the separation property: If $B \cup \{c\}$ is a set of formulas over a sublanguage \mathcal{K} of \mathcal{L} that contains \backslash , then $B \vdash_{\mathbf{HL}} c$ iff $B \vdash_{\mathcal{K}-\mathbf{HL}} c$. For a set of formulas $B \cup \{c\}$ over \mathcal{K} , we let $\mathbf{S}_{\mathcal{K}}$ be the partial subalgebra of $\mathbf{Fm}_{\mathcal{K}}$ of all *subformulas* of $B \cup \{c\}$. Consider the preframe W is the free monoid over $\mathbf{S}_{\mathcal{K}}$, $W' = S_{\mathcal{K}}$ and where $x \sqsubseteq a$ iff $B \vdash_{\mathcal{K}\mathbf{HL}} \phi_{\mathcal{K}}(x \Rightarrow a)$; here $\phi_{\mathcal{K}}$ is an apporpriate transformation from

sequents to \mathcal{K} -formulas.

If $B \vdash_{\mathbf{HL}} c$, then $s[B] \vdash_{\mathbf{FL}} s(c)$. We have $\{1 \leq b \mid b \in B\} \models_{\mathbf{W}^+} 1 \leq c$. Let $h : \mathbf{Fm}_{\mathcal{L}} \to \mathbf{W}^+$ be the homomorphism that extends the identity assingment $p \mapsto q(p)$. So, if $h(1) \subseteq_{\mathbf{W}^+} h(b)$, for all $b \in B$, then $h(1) \subseteq_{\mathbf{W}^+} h(c)$, Since h is a \mathcal{L} -homomorphism we have $h(1) = \gamma(\varepsilon)$. Moreover, ($\mathbf{W}, \mathbf{S}_{\mathcal{K}}$) is a Gentzen frame, so for every subformula d of $B \cup \{c\}$, $h(d) = \{d\}^{\triangleleft}$. Consequently, $h(1) \subseteq_{\mathbf{W}^+} h(d)$ iff $\gamma(\varepsilon) \subseteq_{\mathbf{W}^+} \{d\}^{\triangleleft}$ iff $\varepsilon \in \{d\}^{\triangleleft}$ iff $\varepsilon N d$. This is equivalent to $B \vdash_{\mathcal{K}\mathbf{HL}} d$, so we have that $B \vdash_{\mathcal{K}\mathbf{HL}} b$, for all $b \in B$ implies $B \vdash_{\mathcal{K}\mathbf{HL}} c$. Thus, we obtain

Nick Galatos, SYSMICS, Chapman, September 2018

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

Variants of frames

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

A distributive residuated frame is a structure $\mathbf{W} = (W, \circ, 1, \bigotimes, \sqsubseteq, W')$

- (W, \sqsubseteq, W') is a lattice frame
- $\begin{tabular}{ll} \hline & (W,\circ,1) \mbox{ is a monoid } \\ \end{tabular}$
- \blacksquare (W, \bigcirc) is a commutative, idempotent semigroup
- both o and () are residuated and the following condition holds:

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

A distributive residuated frame is a structure $\mathbf{W} = (W, \circ, 1, \bigodot, \sqsubseteq, W')$

- (W, \sqsubseteq, W') is a lattice frame
- $\blacksquare \quad (W, \circ, 1) \text{ is a monoid}$
- \blacksquare (W, \bigcirc) is a commutative, idempotent semigroup

both \circ and \bigcirc are residuated and the following condition holds:

 $\frac{x \sqsubseteq z}{x \bigotimes y \sqsubseteq z} \ (\bigotimes i)$

Theorem. The Galois algebra \mathbf{W}^+ is a distributive RL.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

A distributive residuated frame is a structure $\mathbf{W} = (W, \circ, 1, \oslash, \sqsubseteq, W')$

- (W, \sqsubseteq, W') is a lattice frame
- $\blacksquare \quad (W, \circ, 1) \text{ is a monoid}$
- \blacksquare (W, \bigcirc) is a commutative, idempotent semigroup

■ both • and () are residuated and the following condition holds:

 $\frac{x \sqsubseteq z}{x \bigotimes y \sqsubseteq z} \ (\bigotimes i)$

Theorem. The Galois algebra \mathbf{W}^+ is a distributive RL. The Gentzen frame condition for left- \wedge becomes even simpler:

 $\frac{a \bigotimes b \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}\ell)$

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

A distributive residuated frame is a structure $\mathbf{W} = (W, \circ, 1, \bigcirc, \sqsubseteq, W')$

- $\begin{tabular}{ll} \hline & (W,\sqsubseteq,W') \mbox{ is a lattice frame} \\ \end{tabular}$
- $\blacksquare \quad (W, \circ, 1) \text{ is a monoid}$
- \blacksquare (W, \bigcirc) is a commutative, idempotent semigroup

both \circ and \bigcirc are residuated and the following condition holds:

 $\frac{x \sqsubseteq z}{x \bigotimes y \sqsubseteq z} \ (\bigotimes i)$

Theorem. The *Galois algebra* \mathbf{W}^+ is a distributive RL. The Gentzen frame condition for left- \wedge becomes even simpler:

 $\frac{a \bigotimes b \sqsubseteq z}{a \land b \sqsubseteq z} (\land \mathsf{L}\ell)$

Applications include:

- Simple equations are: All equations over $\{\land,\lor,\cdot,1\}$.
- A new *distributive* completion
- Cut-elimination (DFL and BI-logic)
- FMP, FEP

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM BiFL frames

Hyper-frames

Examples

References

An *involutive frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, \sim, -, \sqsubseteq)$, where

- (W, \sqsubseteq, W) is a lattice frame
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ is a monoid}$

$$x^{\sim -} = x = x^{-}$$

$$(x \circ y)^{\sim \sim} = (x^{\sim \sim} \circ y^{\sim \sim})$$

• is residuated with $x \setminus z = (z^- \circ x)^{\sim}$ and $z \not| y = (y \circ z^{\sim})^-$

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM BiFL frames Hyper-frames

Examples

References

- An *involutive frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, \sim, -, \sqsubseteq)$, where
- $\blacksquare \quad (W, \sqsubseteq, W) \text{ is a lattice frame}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ is a monoid}$
- $x^{\sim -} = x = x^{-\sim}$

$$(x \circ y)^{\sim \sim} = (x^{\sim \sim} \circ y^{\sim \sim})$$

• is residuated with $x \setminus z = (z^- \circ x)^{\sim}$ and $z \not| y = (y \circ z^{\sim})^-$

An element 0 in a residuated lattice **A** is called *involutive* if for all $a \in A$ we have $\sim -a = a = -\sim a$, where $\sim a = a \setminus 0$ and -a = 0/a.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM BiFL frames Hyper-frames

Examples

References

An *involutive frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, \sim, -, \sqsubseteq)$, where

- $\blacksquare \quad (W,\sqsubseteq,W) \text{ is a lattice frame}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ is a monoid}$
- $x^{\sim -} = x = x^{-\sim}$

$$(x \circ y)^{\sim \sim} = (x^{\sim \sim} \circ y^{\sim \sim})$$

• is residuated with $x \setminus z = (z^- \circ x)^{\sim}$ and $z \not| y = (y \circ z^{\sim})^-$

An element 0 in a residuated lattice **A** is called *involutive* if for all $a \in A$ we have $\sim -a = a = -\sim a$, where $\sim a = a \setminus 0$ and -a = 0/a. If **W** is an involutive frame its *dual algebra* has involutive element $\{\varepsilon\}^{\triangleleft}$.

An *involutive frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, \sim, -, \sqsubseteq)$, where

- $\blacksquare \quad (W, \sqsubseteq, W) \text{ is a lattice frame}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ is a monoid}$

$$x^{\sim -} = x = x^{-1}$$

• is residuated with $x \setminus z = (z^- \circ x)^{\sim}$ and $z / y = (y \circ z^{\sim})^-$

An element 0 in a residuated lattice **A** is called *involutive* if for all $a \in A$ we have $\sim -a = a = -\sim a$, where $\sim a = a \setminus 0$ and -a = 0/a. If **W** is an involutive frame its *dual algebra* has involutive element $\{\varepsilon\}^{\triangleleft}$.

To the conditions for a Gentzen frame we add:

$$\frac{x \sqsubseteq a}{\sim a \sqsubseteq x^{\sim}} (\sim \mathsf{L}) \qquad \frac{x \sqsubseteq a^{\sim}}{x \sqsubseteq \sim a} (\sim \mathsf{R}) \qquad \frac{x \sqsubseteq a}{-a \sqsubseteq x^{-}} (-\mathsf{L}) \qquad \frac{x \sqsubseteq a^{-}}{x \sqsubseteq -a} (-\mathsf{R})$$

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM BiFL frames Hyper-frames Examples

References

Lattice representation

Residuated frames

Substructural logics

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM BiFL frames Hyper-frames Examples

References

An *involutive frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, \overset{\sim}{}, \overset{-}{}, \sqsubseteq)$, where

- $\blacksquare \quad (W,\sqsubseteq,W) \text{ is a lattice frame}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ is a monoid}$

$$x^{\sim -} = x = x^{-1}$$

• is residuated with $x \setminus z = (z^- \circ x)^{\sim}$ and $z / y = (y \circ z^{\sim})^-$

An element 0 in a residuated lattice **A** is called *involutive* if for all $a \in A$ we have $\sim -a = a = -\sim a$, where $\sim a = a \setminus 0$ and -a = 0/a. If **W** is an involutive frame its *dual algebra* has involutive element $\{\varepsilon\}^{\triangleleft}$.

To the conditions for a Gentzen frame we add:

$$\frac{x \sqsubseteq a}{\sim a \sqsubseteq x^{\sim}} (\sim \mathsf{L}) \qquad \frac{x \sqsubseteq a^{\sim}}{x \sqsubseteq \sim a} (\sim \mathsf{R}) \qquad \frac{x \sqsubseteq a}{-a \sqsubseteq x^{-}} (-\mathsf{L}) \qquad \frac{x \sqsubseteq a^{-}}{x \sqsubseteq -a} (-\mathsf{R})$$

Applications include:

- A new *involutive* completion
- Cut-elimination
- FMP

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^{+}, y^{\bullet}, y^{+}, a, b \in A$:

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^+, y^{\bullet}, y^+, a, b \in A$:

 $(x^{\bullet}, x^+) \circ (y^{\bullet}, y^+) = (x^{\bullet} \cdot y^{\bullet}, x^+ + y^+)$

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^+, y^{\bullet}, y^+, a, b \in A$:

$$(x^{\bullet}, x^{+}) \circ (y^{\bullet}, y^{+}) = (x^{\bullet} \cdot y^{\bullet}, x^{+} + y^{+})$$
$$(x^{+}, x^{\bullet}) \oplus (y^{+}, y^{\bullet}) = (x^{+} + y^{+}, x^{\bullet} \cdot y^{\bullet})$$

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM

BiFL frames Hyper-frames

Examples

References

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^{+}, y^{\bullet}, y^{+}, a, b \in A$:

$$\begin{aligned} (x^{\bullet}, x^{+}) &\circ (y^{\bullet}, y^{+}) = (x^{\bullet} \cdot y^{\bullet}, x^{+} + y^{+}) \\ (x^{+}, x^{\bullet}) &\oplus (y^{+}, y^{\bullet}) = (x^{+} + y^{+}, x^{\bullet} \cdot y^{\bullet}) \\ 1 &= (1, 0), \ 0 = (0, 1), \ \text{and} \ -(a, b) = (b, a), \end{aligned}$$

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^{+}, y^{\bullet}, y^{+}, a, b \in A$:

$$\begin{aligned} (x^{\bullet}, x^{+}) &\circ (y^{\bullet}, y^{+}) = (x^{\bullet} \cdot y^{\bullet}, x^{+} + y^{+}) \\ (x^{+}, x^{\bullet}) &\oplus (y^{+}, y^{\bullet}) = (x^{+} + y^{+}, x^{\bullet} \cdot y^{\bullet}) \\ 1 &= (1, 0), \ 0 = (0, 1), \ \text{and} \ -(a, b) = (b, a), \\ (x^{\bullet}, x^{+}) &\sqsubseteq (y^{+}, y^{\bullet}) \ \Leftrightarrow \ x^{\bullet} \cdot y^{\bullet} \leq x^{+} + y^{+}. \end{aligned}$$

 Substructural logics

 Lattice representation

 Residuated frames

 Variants of frames

 Distributive frames

 Involutive frames

 Existence of ComIDM

 BiFL frames

 Hyper-frames

 Examples

 References

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive **A**-frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^{+}, y^{\bullet}, y^{+}, a, b \in A$:

$$\begin{aligned} (x^{\bullet}, x^{+}) &\circ (y^{\bullet}, y^{+}) = (x^{\bullet} \cdot y^{\bullet}, x^{+} + y^{+}) \\ (x^{+}, x^{\bullet}) &\oplus (y^{+}, y^{\bullet}) = (x^{+} + y^{+}, x^{\bullet} \cdot y^{\bullet}) \\ 1 &= (1, 0), \ 0 = (0, 1), \ \text{and} \ -(a, b) = (b, a), \\ (x^{\bullet}, x^{+}) &\sqsubseteq (y^{+}, y^{\bullet}) \ \Leftrightarrow \ x^{\bullet} \cdot y^{\bullet} \leq x^{+} + y^{+}. \end{aligned}$$

We also consider the map $a \mapsto (a, 0)$ from A to W and the map $a \mapsto (a, 1)$ from A to W'.

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM

BiFL frames Hyper-frames

Examples

References

An ℓ -bimonoid is a structure $\mathbf{A} = (A, \land, \lor, \cdot, 1, +, 0)$, with a lattice and two commutative monoid reducts, such that multiplciation distributes over joins, addition over meets and $x(y+z) \leq xy+z$. Given such an algebra, we will construct an involutive \mathbf{A} -frame $\mathbf{F}_{\mathbf{A}}$.

We define $W = W' = A \times A$ and operations \circ on W and \oplus on W, where for all $x^{\bullet}, x^{+}, y^{\bullet}, y^{+}, a, b \in A$:

$$\begin{aligned} (x^{\bullet}, x^{+}) &\circ (y^{\bullet}, y^{+}) = (x^{\bullet} \cdot y^{\bullet}, x^{+} + y^{+}) \\ (x^{+}, x^{\bullet}) &\oplus (y^{+}, y^{\bullet}) = (x^{+} + y^{+}, x^{\bullet} \cdot y^{\bullet}) \\ 1 &= (1, 0), \ 0 = (0, 1), \ \text{and} \ -(a, b) = (b, a), \\ (x^{\bullet}, x^{+}) &\sqsubseteq (y^{+}, y^{\bullet}) \ \Leftrightarrow \ x^{\bullet} \cdot y^{\bullet} \leq x^{+} + y^{+}. \end{aligned}$$

We also consider the map $a \mapsto (a, 0)$ from A to W and the map $a \mapsto (a, 1)$ from A to W'.

Theorem. If A is an ℓ -bimonoid, then $\mathbf{F}_{\mathbf{A}}$ is faithful involutive A-frame. So, A embeds into the InCRL $\mathbf{F}_{\mathbf{A}}^+$.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames

Existence of ComIDM

BiFL frames Hyper-frames

Examples

References

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Involutive frames Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

A $BiFL_e$ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, -, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ and $(A, \lor, \land, +, -, 0)$ are commutative residuated lattices.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames Involutive frames

Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

A $BiFL_e$ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, -, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ and $(A, \lor, \land, +, -, 0)$ are commutative residuated lattices.

An FL_e^+ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ is a commutative residuated lattice and $x + (y \land z) = (x + y) \land (x + z)$.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

A $BiFL_e$ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, -, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ and $(A, \lor, \land, +, -, 0)$ are commutative residuated lattices.

An FL_e^+ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ is a commutative residuated lattice and $x + (y \land z) = (x + y) \land (x + z)$.

A *(commutative) biresiduated frame* is a structure $\mathbf{W} = (W, \circ, \varepsilon, N, W', \oplus, \epsilon)$, where

- $\begin{tabular}{ll} \hline & (W,N,W') \end{tabular} is a lattice frame \\ \end{tabular}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ and } (W', \oplus, \epsilon) \text{ are commutative monoids.}$
- $x \circ y \sqsubseteq z$ iff $y \sqsubseteq x \setminus x$, and $z \sqsubseteq x \oplus y$ iff $z // y \sqsubseteq x$.

Nick Galatos, SYSMICS, Chapman, September 2018

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames

Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

A $BiFL_e$ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, -, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ and $(A, \lor, \land, +, -, 0)$ are commutative residuated lattices.

An FL_e^+ -algebra is an algebra $\mathbf{A} = (A, \land, \lor, \cdot, \rightarrow, 1, +, 0)$, where $(A, \land, \lor, \cdot, \rightarrow, 1)$ is a commutative residuated lattice and $x + (y \land z) = (x + y) \land (x + z)$.

A (commutative) biresiduated frame is a structure $\mathbf{W} = (W, \circ, \varepsilon, N, W', \oplus, \epsilon)$, where

- $\begin{tabular}{ll} \hline & (W,N,W') \end{tabular} is a lattice frame \\ \end{tabular}$
- $\blacksquare \quad (W, \circ, \varepsilon) \text{ and } (W', \oplus, \epsilon) \text{ are commutative monoids.}$
- $x \circ y \sqsubseteq z$ iff $y \sqsubseteq x \setminus x$, and $z \sqsubseteq x \oplus y$ iff $z // y \sqsubseteq x$.

Using biresiduated frames we can prove that every FL_e^+ -algebra can be embedded in a $BiFL_e$ -algebra.

Hyper-frames

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames Involutive frames

Existence of ComIDM

BiFL frames

Hyper-frames

Examples

References

A hyperresiduated frame is a structure $\mathbf{H} = (W, W', \vdash, \circ, \varepsilon)$, where

 $\blacksquare (W, \circ, \varepsilon) \text{ is a monoid and } W' \text{ is a set.}$

• \vdash is an upward closed subset of H, the free semilattice over $W \times W'$.

For all $x, y \in W$ and $z \in W'$ there exist elements $x \setminus z, z / \!\!/ y \in W'$ such that for any $h \in H$,

 $\vdash (x \circ y, z) \mid h \iff \vdash (y, x \setminus \!\!\! \setminus z) \mid h \iff \vdash (x, z /\!\!\! / y) \mid h.$

Hyper-frames

Substructural logics

Lattice representation

Residuated frames

Variants of frames Distributive frames Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

A hyperresiduated frame is a structure $\mathbf{H} = (W, W', \vdash, \circ, \varepsilon)$, where

 $\blacksquare (W, \circ, \varepsilon) \text{ is a monoid and } W' \text{ is a set.}$

• \vdash is an upward closed subset of H, the free semilattice over $W \times W'$.

For all $x, y \in W$ and $z \in W'$ there exist elements $x \setminus z, z / y \in W'$ such that for any $h \in H$, $\vdash (x \circ y, z) \mid h \Leftrightarrow \vdash (y, x \setminus z) \mid h \Leftrightarrow \vdash (x, z / y) \mid h$.

The *dual algebra* \mathbf{H}^+ is the dual algebra of the residuated frame $r(\mathbf{H}) = (W \times H, W' \times H, \sqsubseteq, \bullet, (\varepsilon; \emptyset)),$

 $\begin{array}{rcl} (x;h_1) \bullet (y;h_2) &=& (x \circ y;h_1 \mid h_2) \\ (x;h_1) \setminus (z;h_2) &=& (x \setminus z;h_1 \mid h_2) \\ (z;h_2) /\!\!/ (x;h_1) &=& (z /\!\!/ x;h_1 \mid h_2) \\ (x;h_1) \sqsubseteq (z;h_2) \iff \vdash (x,z) \mid h_1 \mid h_2. \end{array}$

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames Involutive frames Existence of ComIDM BiFL frames Hyper-frames

Examples

References

 $\vdash (x_1, y_1) \mid \ldots \mid (x_n, y_n) \iff 1 \le \gamma_1(x_1 \setminus y_1) \lor \cdots \lor \gamma_n(x_n \setminus y_n).$

 $\mathbf{H}_{\mathbf{A}} = (A, A, \vdash, \cdot, 1)$ is a hyperresiduated frame, where:

Example. If $\mathbf{A} = (A, \wedge, \vee, \cdot, \backslash, /, 1)$ is an residuated lattice, then

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

Example. If $\mathbf{A} = (A, \land, \lor, \lor, \backslash, /, 1)$ is an residuated lattice, then $\mathbf{H}_{\mathbf{A}} = (A, A, \vdash, \cdot, 1)$ is a hyperresiduated frame, where:

 $\vdash (x_1, y_1) | \dots | (x_n, y_n) \iff 1 \le \gamma_1(x_1 \setminus y_1) \lor \dots \lor \gamma_n(x_n \setminus y_n).$

The *hyper-MacNeille completion* of an FL-algebra \mathbf{A} is $\mathbf{H}_{\mathbf{A}}^+$.

Substructural logics

Lattice representation

Residuated frames

Variants of frames

Distributive frames Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

Example. If $\mathbf{A} = (A, \land, \lor, \lor, \backslash, /, 1)$ is an residuated lattice, then $\mathbf{H}_{\mathbf{A}} = (A, A, \vdash, \cdot, 1)$ is a hyperresiduated frame, where:

 $\vdash (x_1, y_1) | \dots | (x_n, y_n) \iff 1 \le \gamma_1(x_1 \setminus y_1) \lor \dots \lor \gamma_n(x_n \setminus y_n).$

The *hyper-MacNeille completion* of an FL-algebra \mathbf{A} is $\mathbf{H}_{\mathbf{A}}^+$.

Example. Given a residuated frame $\mathbf{W} = (W, W', \sqsubseteq, \circ, \varepsilon, \epsilon)$, we obtain a hyperresiduated frame $h(\mathbf{W}) = (W, W', \vdash, \circ, \varepsilon, \epsilon)$ by defining

 $\vdash (x_1, y_1) \mid \ldots \mid (x_n, y_n) \iff x_1 \sqsubseteq y_1 \text{ or } \cdots \text{ or } x_n \sqsubseteq y_n.$

Substructural logics

Lattice representation

Residuated frames

Variants of frames Distributive frames Involutive frames Existence of ComIDM BiFL frames Hyper-frames Examples

References

Example. If $\mathbf{A} = (A, \land, \lor, \lor, \backslash, /, 1)$ is an residuated lattice, then $\mathbf{H}_{\mathbf{A}} = (A, A, \vdash, \cdot, 1)$ is a hyperresiduated frame, where:

 $\vdash (x_1, y_1) \mid \ldots \mid (x_n, y_n) \iff 1 \le \gamma_1(x_1 \setminus y_1) \lor \cdots \lor \gamma_n(x_n \setminus y_n).$

The *hyper-MacNeille completion* of an FL-algebra \mathbf{A} is $\mathbf{H}_{\mathbf{A}}^+$.

Example. Given a residuated frame $\mathbf{W} = (W, W', \sqsubseteq, \circ, \varepsilon, \epsilon)$, we obtain a hyperresiduated frame $h(\mathbf{W}) = (W, W', \vdash, \circ, \varepsilon, \epsilon)$ by defining

 $\vdash (x_1, y_1) \mid \ldots \mid (x_n, y_n) \iff x_1 \sqsubseteq y_1 \text{ or } \cdots \text{ or } x_n \sqsubseteq y_n.$

Example. Let W be the free monoid over the set Fm of all formulas and n-negated formulas $n \in \mathbb{Z}$. We can define a hyperresiduated frame from a hypersequent version of \mathbf{FL} in the natural way.
Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

Bibliography

References

Bibliography

Substructural logics

Lattice representation

Residuated frames

Variants of frames

References

Bibliography

R. Cardona, N. Galatos, *The finite embeddability property for noncommutative knotted extensions of RL*. Internat. J. Algebra Comput. 25 (2015), no. 3, 349-379.

R. Cardona, N. Galatos, *The FEP for some varieties of fully-distributive knotted residuated lattices*, to appear in Algebra Universalis.

A. Ciabattoni, N. Galatos and R. Ramanayake. Conservativity via embeddings for BiFL-algebras, in progress.

A. Ciabattoni, N. Galatos and K. Terui, *Algebraic proof theory for substructural logics: Cut-elimination and completions*, Ann. Pure Appl. Logic 163 (2012), no. 3, 266-290.

A. Ciabattoni, N. Galatos and K. Terui, *Algebraic proof theory for substructural logics: hypersequents*, to appear in the Annals of Pure and Applied Logic.

N. Galatos and R. Horcik, *Densification via polynomial extensions*, to appear in the Journal of Pure and Applied Algebra.

N. Galatos and P. Jipsen. Residuated frames and applications to decidability, Transactions of the AMS 365 (2013), no. 3, 1219-1249.

N. Galatos and P. Jipsen, *Distributive residuated frames and generalized bunched implication algebras*, to appear in Algebra Universalis.

N. Galatos, P. Jipsen, T. Kowalski and H. Ono. *Residuated Lattices: an algebraic glimpse at substructural logics*, Studies in Logics and the Foundations of Mathematics, Elsevier, 2007.

N. Galatos and G. St. John, *Undecidability for varieties of commutative residuated lattices*, in progress.

Nick Galatos, SYSMECS, Chapman, September 2018