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Standard theory

Let’s start with the standard representation theory for Boolean, Heyting, and
modal algebras from Stone (1934, 1937) and Jónsson and Tarski (1951)
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Two reasons to go beyond the standard theory

1. The relational structures of the standard theory are concrete and intuitive,
but they only allow us to represent atomic/J8-generated MAs/HAs.
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2. The Stone representation in the standard theory is nonconstructive, given its
reliance on the Ultrafilter Principle (Prime Ideal Theorem).
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Superintuitionistic logics

A superintuitionistic logic is any set of formulas of the language of
propositional logic that contains the axioms of the intuitionistic propositional
calculus (IPC) and is closed under uniform substitution and modus ponens.

Superintuitionistic logics ordered by inclusion form a lattice that is dually
isomorphic to the lattice of varieties of Heyting algebras.

There are continuum-many superintuitionistic logics. Some examples:

Logic of Weak Excluded Middle = IPC + p _  p;

Gödel-Dummet Logic = IPC + (p Ñ q)_ (q Ñ p);

Classical Logic = IPC + p _ p.



Modal logics

The modal language adds to the propositional language a unary connective l.

A modal logic is any set of formulas of the modal language that contains all
classical tautologies and the axiom l(p ^ q)Ø (lp ^lq) and is closed under
uniform substitution, modus ponens, and prefixing l.

Modal logics ordered by inclusion form a lattice that is dually isomorphic to the
lattice of varieties of modal algebras.

There are continuum-many modal logics. Some examples:

K = the minimal modal logic;

S4 = K + tlp Ñ p, lp Ñ llpu;

Gödel-Löb Logic = K + tl(lp Ñ p)Ñ lpu.



Why go beyond Kripke?

Theorem (Thomason 1972, 1974)
There are modal logics that are not the logic of any class of Kripke frames, or
equivalently, of complete and atomic MAs with completely additive operators.

Theorem (Fine 1974)
There are continuum-many such modal logics.

Theorem (Shehtman 1977)
There are superintuitionistic logics that are not the logic of any class of partial
orders, or equivalently, of complete and J8-generated HAs.

Theorem (Litak 2002)
There are continuum-many such superintuitionistic logics.
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Which properties can be blamed?

Which properties of the MAs/HAs in question can be blamed for the
incompleteness phenomenon (and to what extent)?

Let’s start with the intuitionistic case.

Theorem (Shehtman 1977, Litak 2002)
There are continuum-many superintuitionistic logics that are not the logic of any
class of partial orders, or equivalently, of complete and J8-generated HAs.

Kutznetsov’s Problem (1974): is every superintuitionistic logic the logic of
some class of topological spaces (spatial cHAs)? Or at least some class of cHAs?

No leads toward a solution of this problem for 40 years. . .

The research program I will describe may provide new lines of attack. . .
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Which properties can be blamed in the modal case?

Theorem (Venema 2003)
There are modal logics that are not the logic of any class of atomic MAs (and
polymodal logics that are not even sound with respect to any atomic MAs).

Theorem (Litak 2004)
There are continuum-many modal logics that are not the logic of any class of
complete MAs.

The natural next question, raised in Litak’s dissertation (2005) and by Venema in
the Handbook of Modal Logic (2006), is whether such incompleteness or
unsoundness results also apply to completely multiplicative MAs.

The research program I will describe already led to the solution of this problem.
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Incompleteness with richer languages
If we move to more expressive languages, then incompleteness with respect to
Kripke frames arises even more easily.

Consider, for example, modal logic with propositional quantification: @pϕ, Dpϕ.

In a complete MA, we can interpret @ and D with meets and joins:

v(@pϕ) =
ľ

tv 1(ϕ) | v 1 a valuation differing from v at most at pu.

v(Dpϕ) =
ł

tv 1(ϕ) | v 1 a valuation differing from v at most at pu.

In a complete BA, we can simply interpret l by:

v(lϕ) =

#

1 if v(ϕ) = 1

0 otherwise
.
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Theorem (H. 2017)
The set of formulas valid in all complete BAs is axiomatized by the logic S5Π,
which adds to the modal logic S5 the following axioms and rule:

§ @-distribution: @p(ϕ Ñ ψ)Ñ (@pϕ Ñ @pψ).

§ @-instantiation: @pϕ Ñ ϕp
ψ where ψ is free for p in ϕ;

§ Vacuous-@: ϕ Ñ @pϕ where p is not free in ϕ.

§ @-generalization: if ϕ is a theorem, so is @pϕ.

By contrast, if we restrict to atomic cBAs (as in possible world semantics) one
obtains additional validities not derivable in S5Π, such as:

Dq(q ^@p(p Ñ l(q Ñ p))).

My student Yifeng Ding is pushing further with the program of interpreting
propositionally quantified modal logics in complete (not necessarily atomic) MAs.



Theorem (H. 2017)
The set of formulas valid in all complete BAs is axiomatized by the logic S5Π,
which adds to the modal logic S5 the following axioms and rule:

§ @-distribution: @p(ϕ Ñ ψ)Ñ (@pϕ Ñ @pψ).

§ @-instantiation: @pϕ Ñ ϕp
ψ where ψ is free for p in ϕ;

§ Vacuous-@: ϕ Ñ @pϕ where p is not free in ϕ.

§ @-generalization: if ϕ is a theorem, so is @pϕ.

By contrast, if we restrict to atomic cBAs (as in possible world semantics) one
obtains additional validities not derivable in S5Π, such as:

Dq(q ^@p(p Ñ l(q Ñ p))).

My student Yifeng Ding is pushing further with the program of interpreting
propositionally quantified modal logics in complete (not necessarily atomic) MAs.



Theorem (H. 2017)
The set of formulas valid in all complete BAs is axiomatized by the logic S5Π,
which adds to the modal logic S5 the following axioms and rule:

§ @-distribution: @p(ϕ Ñ ψ)Ñ (@pϕ Ñ @pψ).

§ @-instantiation: @pϕ Ñ ϕp
ψ where ψ is free for p in ϕ;

§ Vacuous-@: ϕ Ñ @pϕ where p is not free in ϕ.

§ @-generalization: if ϕ is a theorem, so is @pϕ.

By contrast, if we restrict to atomic cBAs (as in possible world semantics) one
obtains additional validities not derivable in S5Π, such as:

Dq(q ^@p(p Ñ l(q Ñ p))).

My student Yifeng Ding is pushing further with the program of interpreting
propositionally quantified modal logics in complete (not necessarily atomic) MAs.



Chronological staring point

The starting point of my work on this project was L. Humberstone’s 1981 paper

“From Worlds to Possibilities”,

which proposes a possibility semantics for classical modal logics.

While Humberstone motivated the semantics with philosophical considerations,
I’ll give a different, mathematical motivation.
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Mathematical starting point

Stone and Tarski observed that the regular opens of any topological space X ,
i.e., those opens such that U = int(cl(U)), form a complete BA with

 U = int(X zU)
ľ

tUi | i P I u = int(
č

tUi | i P I u)
ł

tUi | i P I u = int(cl(
ď

tUi | i P I u).

In fact, any complete BA arises (isomorphically) in this way from an Alexandroff
space, i.e., as the regular opens in the downset/upset topology of a poset.
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The regular open algebra of a poset

In the case of upsets of a poset, the regular opens are the U such that

U = tx P X | @y ě x Dz ě y : z P Uu,

which is equivalent to:

§ persistence: if x P U and x ď y , then y P U , and

§ refinability: if x R U , then Dy ě x : y P  U .

The BA operations are given by:
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Mathematical starting point

The facts just observed are the basis of “weak forcing” in set theory.

As Takeuti and Zaring (Axiomatic Set Theory, p. 1) explain:

One feature [of the theory developed in this book] is that it establishes
a relationship between Cohen’s method of forcing and Scott-Solovay’s
method of Boolean valued models. The key to this theory is found in a
rather simple correspondence between partial order structures and
complete Boolean algebras. . . . With each partial order structure P,
we associate the complete Boolean algebra of regular open sets
determined by the order topology on P. With each Boolean algebra B,
we associate the partial order structure whose universe is that of B
minus the zero element and whose order is the natural order on B.
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Mathematical starting point

So our starting point is the following (working with upsets instead of downsets):

algebras represented by

complete BA
ñ

nonzero elements with restricted reverse order
ð

regular opens in upset topology
poset

Possibility semantics for modal logic extends this idea to MAs.

Possibility semantics for intuitionistic logic generalizes the idea to HAs.
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Possibility frames

A (full) possibility frame is a pair (X ,R) where X is a poset, R is a binary
relation on X , and the operation lR defined by

lRU = tx P X | R(x) Ď Uu

sends regular opens of X to regular opens of X .

Thus, (RO(X ), lR) is an MA.

The key to possibility frames is the interaction between R and the partial order ď.

Proposition (H. 2015)
The class of possibility frames is definable in the first-order language of R and ď.
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Proposition (H. 2015)
For any possibility frame (X ,R0), there is a possibility frame (X ,R) such that
lR0

= lR and (X ,R) satisfies:

§ Rôwin: xRy iff @y 1 ě y Dx 1 ě x @x2 ě x 1 Dy2 ě y 1: x2Ry2.

This has a natural game-theoretic interpretation: xRy iff player E has a winning
strategy in the accessibility game starting from (x , y).
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Extending the regular open representation

algebras represented by

complete MA with
completely multiplicative l

ñ
nonzero elements with restricted reverse order

and R defined as below
ð

regular opens in upset topology with lR

possibility
frame

We define a binary relation R on the non-zero elements of the MA as follows:

aRb iff @ nonzero b1 ĺ b : a ł l b1.

Going from a complete and completely multiplicative MA to a possibility frame in
this way and then taking the regular opens of that possibility frame with the
operation lR gives you back an isomorphic copy of your original MA.

This is based on an important fact about complete multiplicativity. . .
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Complete multiplicativity
Complete multiplicativity says that l distributes over the meet of any set of
elements that has a meet: l

Ź

tai | i P I u =
Ź

tlai | i P I u.

Surprisingly, this ostensibly second-order condition is in fact first-order.

Theorem (H. and Litak 2015)
The operation l in an MA is completely multiplicative iff:

if x ł l y , then D nonzero y 1 ĺ y such that xRy 1,

where xRy 1 means as before that @ nonzero y2 ĺ y 1: x ł l y2.

All of the above could be stated in terms of the complete additivity of 3.

H. Andréka, Z. Gyenis, and I. Németi, who learned of our result above from S.
Givant, generalized it to arbitrary posets with completely additive operators.
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Complete multiplicativity

The first-order reformulation of complete multiplicativity led to a solution to the
problem about incompleteness with respect to complete multiplicative MAs.

Theorem (H. and Litak 2015)
There are continuum-many modal logics that are not the logic of any class of
MAs with completely multiplicative l.

Theorem (H. and Litak 2015)
The bimodal provability logic GLB is not the logic of any class of MAs with
completely multiplicative box operators.

Instead of going into the details of this, let’s now assume completely
multiplicativity and consider atomicity. . .
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Contrasts I: duality without atomicity

Let’s contrast Kripke frames and possibility frames.

Theorem (Thomason 1975)
The category of complete and atomic BAs with a completely multiplicative l

and complete Boolean homomorphisms preserving l is dually equivalent to the
category of Kripke frames and p-morphisms.

Theorem (H. 2015)
The category of complete BAs with a completely multiplicative l and complete
Boolean homomorphisms preserving l is dually equivalent to a reflective
subcategory of the category of possibility frames and p-morphisms.
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Contrasts II: Kripke incompleteness

Combining the preceding duality with an incompleteness theorem of Litak 2004,
some extra construction (for the “continuum-many” part), and Thomason’s
simulation of polymodal logics by unimodal logics, we obtain:

Theorem
There are continuum-many unimodal logics that are Kripke frame incomplete but
possibility frame complete.

Remark. Possibility frames furnish a relational proof of Litak’s algebraic theorem.

Remark. For non-normal modal logic, we can use “neighborhood possibility
frames” to prove consistency of very simple and philosophically motivated logics
that are not sound with respect any atomic Boolean algebra expansion. E.g.,
take an S5 3 and a congruential O with the axiom:

3p Ñ (3(p ^Op)^3(p ^ Op)).
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Similarities I: Sahlqvist correspondence theorem

Theorem (Sahlqvist 1973)
Any class of Kripke frames defined by a Sahlqvist modal formula is also definable
by a formula in the first-order language of R .

Theorem (Yamamoto 2016)
Any class of possibility frames defined by a Sahlqvist modal formula is also
definable by a formula in the first-order language of R and ď.

Further results on correspondence and canonicity have been obtained by Z. Zhao.
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Similarities II: Goldblatt-Thomason theorem

Theorem (Goldblatt and Thomason 1975)
If a class F of Kripke frames is closed under elementary equivalence, then F is
definable by modal formulas iff F is closed under

§ surjective p-morphisms, generated subframes, and disjoint unions,

while the complement of F is closed under ultrafilter extensions.

Theorem (H. 2015)
If a class F of possibility frames is closed under elementary equivalence, then F is
definable by modal formulas iff F is closed under

§ dense possibility morphisms, selective subframes, and disjoint unions,

while its complement is closed under filter extensions.



Representation of arbitrary MAs

For the representation of arbitrary MAs, there have been two closely related
approaches in the modal logic literature: descriptive frames and modal spaces.

Let’s consider descriptive frames.
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General frames

A general frame F is a Kripke frame plus a distinguished modal subalgebra of
the powerset algebra with lR .

Each such F give rise to an MA F+ via the distinguished subalgebra.

Conversely, each MA A gives rise to a general frame A+:

§ the set of ultrafilters of A with

§ the relation R defined by uRu1 iff ta P A | la P uu Ď u1 and

§ the distinguished collection of sets pa = tu P UltFilt(A) | a P uu for a P A.

Then (A+)+ is isomorphic to A.

Those F for which (F+)+ is isomorphic to F are the descriptive frames, which
can be characterized by several nice properties.
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General possibility frames

A general possibility frame F is a possibility frame plus a distinguished modal
subalgebra of the full regular open algebra with lR .

Each such F give rise to an MA F ‹ via the distinguished subalgebra.

Conversely, each MA A gives rise to a general possibility frame A‹:

§ the set of proper filters of A with Ď as the inclusion order,

§ the relation R defined by uRu1 iff ta P A | la P uu Ď u1, and

§ the distinguished collection of sets pa = tu P PropFilt(A) | a P uu for a P A.

Then (A‹)‹ is isomorphic to A.

Those F for which (F ‹)‹ is isomorphic to F are the filter-descriptive frames,
which can be characterized by several nice properties.



Choice-free duality

Theorem (Goldblatt 1974)
(ZF + Prime Ideal Theorem) The category of Boolean algebras with a
multiplicative l and Boolean homomorphisms preserving l is dually equivalent
to the category of “descriptive” general frames with p-morphisms.

Theorem (H. 2015)
(ZF) The category of Boolean algebras with a multiplicative l and Boolean
homomorphisms preserving l is dually equivalent to the category of
“filter-descriptive” general possibility frames with p-morphisms.



Constructive canonical extension

Following Gehrke and Harding, an MA B is a canonical extension of an MA A iff:

1. B is complete with completely multiplicative l, and there is a
MA-embedding e of A into B ;

2. every element of B is a join of meets of e-images of elements of A;

3. for any sets X ,Y of elements of A, if
ŹB e[X ] ĺB

ŽB e[X ], then there are
finite X 1 Ď X and Y 1 Ď Y such that

Ź

X 1 ĺ
Ž

Y 1.

Theorem (Jonsson and Tarski 1951)
(ZF + Prime Ideal Theorem) For any modal algebra A, the powerset algebra of
A+ with lR is a canonical extension of A.

Theorem
(ZF) For any modal algebra A, the full regular open algebra of A‹ with lR is a
canonical extension of A.
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approaches in the modal logic literature: descriptive frames and modal spaces.

Rather than discussing modal spaces, let’s just focus on the Boolean part:
BAs represented by Stone spaces.
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Stone spaces and spectral spaces

A space X is a Stone space if X is a zero-dimensional compact Hausdorff space.

A space X is a spectral space if X is compact, T0, coherent (the compact open
sets of X are closed under intersection and form a base for the topology of X ),
and sober (every completely prime filter in Ω(X ) is Ω(x) for some x P X ).

Theorem (Stone 1936)
(ZF + PIT) Any BA A is isomorphic to the BA of clopens of a Stone space:
UltFilt(A) with the topology generated by basic opens
pa = tu P UltFilt(A) | a P uu for a P A.

Theorem (Stone 1938)
(ZF + PIT) Any DL L is isomorphic to the DL of compact opens of a spectral
space: PrimeFilt(L) with the topology generated by basic opens
pa = tu P PrimeFilt(A) | a P uu for a P L.
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“Choice-free Stone duality”

Theorem (N. Bezhanishvili and H. 2016)
(ZF) Any BA A is isomorphic to the BA of compact open regular open sets (with
operations defined as in the regular open algebra) of a UV-space (see below):
PropFilt(A) with the topology generated by basic opens
pa = tu P PropFilt(A) | a P uu for a P A.

(Cf. Moshier & Jipsen, refs therein.)

A UV-space is a T0 space X satisfying the following (implying X is spectral):

1. CORO(X ) is closed under X and regular open negation;

2. x ę y ñ there is a U P CORO(X ) s.t. x P U and y R U ;

3. every proper filter in CORO(X ) is CORO(x) for some x P X .

They are so named because they also arise as the hyperspace of nonempty closed
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Nuclei

Regular that a regular open set is a fixpoint of the operation int(cl(¨)) on the
open sets of a space. Thinking in terms of the cHA of open sets, this is the
operation   of double negation (and the fact that the fixpoints of double
negation form a BA gives an algebraic proof of Glivenko’s theorem).

The operation   is an example of a nucleus on an HA.

A nucleus on an HA H is a function j : H Ñ H satisfying:

1. a ĺ ja (inflationarity);

2. jja ĺ ja (idempotence);

3. j(a^ b) = ja^ jb (multiplicativity).
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The HA of fixpoints of a nucleus

For any HA H and nucleus j on H , let Hj = ta P H | ja = au.

Then Hj is an HA where for a, b P Hj :

§ a^j b = a^ b;

§ aÑj b = aÑ b;

§ a_j b = j(a_ b);

§ 0j = j0.

If H is a complete, so is Hj , where
Ź

j S =
Ź

S and
Ž

j S = j(
Ž

S).

In the case j =   , we have that Hj is a BA.



The HA of fixpoints of a nucleus

For any HA H and nucleus j on H , let Hj = ta P H | ja = au.

Then Hj is an HA where for a, b P Hj :

§ a^j b = a^ b;

§ aÑj b = aÑ b;

§ a_j b = j(a_ b);

§ 0j = j0.

If H is a complete, so is Hj , where
Ź

j S =
Ź

S and
Ž

j S = j(
Ž

S).

In the case j =   , we have that Hj is a BA.



The HA of fixpoints of a nucleus

For any HA H and nucleus j on H , let Hj = ta P H | ja = au.

Then Hj is an HA where for a, b P Hj :

§ a^j b = a^ b;

§ aÑj b = aÑ b;

§ a_j b = j(a_ b);

§ 0j = j0.

If H is a complete, so is Hj , where
Ź

j S =
Ź

S and
Ž

j S = j(
Ž

S).

In the case j =   , we have that Hj is a BA.



The HA of fixpoints of a nucleus

For any HA H and nucleus j on H , let Hj = ta P H | ja = au.

Then Hj is an HA where for a, b P Hj :

§ a^j b = a^ b;

§ aÑj b = aÑ b;

§ a_j b = j(a_ b);

§ 0j = j0.

If H is a complete, so is Hj , where
Ź

j S =
Ź

S and
Ž

j S = j(
Ž

S).

In the case j =   , we have that Hj is a BA.



Representing cHAs as fixpoints of a nucleus on upsets

Dragalin showed that every cHA can be represented using a triple (S ,ď, j) where
(S ,ď) is a poset and j is a nucleus on Up(S ,ď).

Theorem (Dragalin 1981)
Every cHA is isomorphic to the algebra of fixpoints of a nucleus on the upsets of
a poset.

But we would like to replace the operation j with something more concrete. . .
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Intuitionistic possibility frames
An intuitionistic possibility frame is a triple (S ,ď1,ď2) where ď1 and ď2 are
preorders on S such that ď2 is a subrelation of ď1.1

Proposition (Fairtlough and Mendler 1997)
For any such (S ,ď1,ď2), the operation l132 given by

l132U = tx P S | @y ě1 x Dz ě2 y : z P Uu

is a nucleus on Up(S ,ď1).

This approach is related to Urquhart’s representation of lattices using doubly-ordered

sets—see “Representations of complete lattices and the Funayama embedding” by

Bezhanishvili, Gabelaia, H., and Jibladze.

1In Bezhanishvili and H. 2016, these are normal FM-frames after Fairtlough and Mendler
1997.
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Intuitionistic possibility frames

Recall that a Kripke frame (poset) (S ,ď) can represent only the very special
J8-generated complete Heyting algebras via their algebras Up(S ,ď) of upsets.

By contrast, intuitionistic possibility frames (S ,ď1,ď2) can be used to represent
ALL complete Heyting algebras.

Theorem (Bezhanishvili and H. 2016)
Every complete Heyting algebra is isomorphic to the algebra of l132-fixpoints of
some intuitionistic possibility frame.

Guillaume Massas (now at UC Berkeley) gave a different proof in his ILLC thesis.

Both involve essentially the following construction from a cHA H :

S = txa, by P H2
| a ę bu

xa, by ď1 xc , dy ô a ě c , xa, by ď2 xc , dy ô a ě c & b ď d .
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Back to Kuznetsov’s problem

Theorem (Bezhanishvili and H. 2016)
Every complete Heyting algebra is isomorphic to the algebra of l132-fixpoints of
some intuitionistic possibility frame.

Going back to logic, this result gives us quite a concrete semantics for
superintuitionistic logics that is as general as cHA semantics.

Switching from cHAs to these concrete frames may make problems tractable.

Example: one way to solve Kuznetsov’s problem (is every si-logic the logic of
some class of topological spaces?) in the negative would be to show that there
are si-logics that are not the logic of any class of intuitionistic possibility frames.
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Alternative theory
algebras represented by

BA
ñ

proper filters with pa-generated topology
ð

compact open regular opens
UV-space

complete BA
ñ

nonzero elements with restricted reverse order
ð

regular open upsets
poset

complete HA

ñ
txa,byPH2| aębu, xa,byď1xc,dyôaěc

xa,byď2xc,dyôaěc & bďd
ð

l132-fixpoints

intuitionistic
possibility frame

MA

ñ
as in BA case with uRu1 iff ta |laPuuĎu1

ð
as in BA case with lR U=tx |R(x)ĎUu

modal UV-space

complete MA with
completely multiplicative l

ñ
as in cBA case with aRb iff @ nonzero b1ďb: ałl b1

ð
as in cBA case with lR as above

possibility frame


