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DEFINITION  A boolean syntactic tautology is a formula that 
can be derived from the following basic tautologies via 
substitution and modus ponens:    	



syntactic tautologies in boolean logic 



syntactic tautologies in wide generality 

DEFINITION   A 
formula   f   is a 
syntactic tautology 
if it is obtainable 
(typically from some 
basic tautologies) by 
some mechanical 
procedure.    

basic tautology 

tautology 



DEFINITION  A boolean semantic tautology is a formula  f  
such that every valuation into the two element boolean algebra 
{0,1} (the matrix of boolean logic) evaluates  f  to 1.   	



semantic tautologies in boolean logic 
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semantic  tautology of L if every 
valuation gives value 1 to f.   
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we assume there are algebras of the same type (matrices), in such a 
way that valuations are homomorphisms of the term algebra of L into 
a matrix; each matrix has just one constant  1 designated for “true”    



DESIDERATUM  Syntactic and semantic tautologies must coincide.   

semantic tautologies in wide generality 

DEFINITION   A formula f  is a  
semantic  tautology of L if every 
valuation gives value 1 to f.   

homomorphism 

we assume there are algebras of the same type (matrices), in such a 
way that valuations are homomorphisms of the term algebra of L into 
a matrix; each matrix has just one constant  1 designated for “true”    



completeness theorem for boolean tautologies 

THEOREM (fulfilling the Desideratum)  Boolean syntactic and 
semantic tautologies coincide.   	





completeness theorem for boolean tautologies 

THEOREM (fulfilling the Desideratum)  Boolean syntactic and 
semantic tautologies coincide.   	



Next, taking inspiration from Algebra, let us consider  
the main theme of this talk, namely  

CONSEQUENCE 



VIA RULES:  the ideal generated by a 
set F of elements of an algebra A  is the 
set of elements obtainable from F via 
finitely many applications of certain 
operations and relations of A. 	


(Depends on the definition of these 
operations and relations)     

ALGEBRA:  two ways to generate an ideal 



VIA RULES:  the ideal generated by a 
set F of elements of an algebra A  is the 
set of elements obtainable from F via 
finitely many applications of certain 
operations and relations of A. 	


(Depends on the definition of these 
operations and relations)     

ALGEBRA:  two ways to generate an ideal 

VIA SPECIAL IDEALS: an element g 
belongs to the  ideal  generated by a set F 
of elements of an algebra A  if for every 
“irreducible” ideal  I  such that f/I=0 for 
all f in F,  we also have  g/I=0. 	


(Depends on the definition of “irreducible 
ideal”, or “irreducible congruence”)      



VIA RULES:  ψ belongs to the deductive 
closure of a set of formulas if it is obtainable 
from a subset of F via finitely many 
“mechanical” manipulations  	



(typically, involving  time-honored “rules” such as  
“modus ponens”, [if each matrix has an operation  
obeying the following minimum requirement for an 
implication:    (x (y z)) = (y (x z))]     
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from a subset of F via finitely many 
“mechanical” manipulations  	



(typically, involving  time-honored “rules” such as  
“modus ponens”, [if each matrix has an operation  
obeying the following minimum requirement for an 
implication:    (x (y z)) = (y (x z))]     

LOGIC: two definitions of “deductive closure” 

VIA VALUATIONS/MODELS   ψ   belongs 
to the deductive closure of a set Θ  of 
formulas  if every valuation  assigning 1 to 
every element θ  of Θ also assigns 1 to ψ.     

rules are 2500 years older than valuations 



† “After the original of this paper had appeared in print, H. Scholz in his article 
‘Die Wissenschaftslehre Bolzanos,  Eine Jahrhundert-Betrachtung’, Abhandlungen 
der Fries’schen Schule, new series, vol. 6, pp. 399-472 (see in particular p. 472, 
footnote 58) pointed out  a far-reaching analogy between this definition  of 
consequence and the one suggested by  B. Bolzano about a hundred years earlier.” 	



[Note added by Tarski in English in A. Tarski,	


 “Logic, Semantics, Metamathematics”,  Oxford (1956) p. 417] 
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In first-order logic, “models” 
have a well known definition. In 
our propositional framework, 
“models” are valuations: 



Semantic consequence (first half of the XXth century) 

REFORMULATION (for logics 
given by matrices)  A formula ψ   
is a semantic consequence of a set 
Θ of formulas if every valuation 
that gives value 1 to all formulas 
of  Θ also gives value 1 to  ψ.   

In first-order logic, “models” 
have a well known definition. In 
our propositional framework, 
“models” are valuations: 





Syntactic consequence in boolean logic 

DEFINITION   In boolean logic, a formula  ψ  is a syntactic 
consequence of a set Θ of formulas if it can be derived from the 
syntactic tautologies and Θ via finitely many applications of 
“modus ponens”   



Semantic consequence in boolean logic 

DEFINITION    In boolean logic, a formula  ψ is a  (Bolzano-
Tarski)  semantic consequence of a set Θ of formulas if every 
valuation that gives value 1 to all formulas of  Θ  also gives value 
1  to  ψ.   



Semantic consequence in boolean logic 

THEOREM    In boolean logic syntactic  consequence coincides 
with Bolzano-Tarski semantic sequence.   

DEFINITION    In boolean logic, a formula  ψ is a  (Bolzano-
Tarski)  semantic consequence of a set Θ of formulas if every 
valuation that gives value 1 to all formulas of  Θ  also gives value 
1  to  ψ.   



This theorem is misldeading 
This completeness theorem  depends on the 
following facts:	



—“valuations” are quotients by (dual) maximal 
ideals (filters) of the free boolean algebra	



—maximal ideals = meet irreducible ideals = 
prime ideals.  	



In algebraic logic, as well as in ring theory, 
these identities are exceptional.	



Thus e.g.,  in Łukasiewicz logic, adoption of the 
Bolzano-Tarski paradigm leads to a gap 
between syntactic and semantic consequence.   



THEOREM  Any algebra ([0,1], 0, ¬, ) with a continuous binary 
operation     having the properties x(yz)=x(yz) and yz 
=1  iff  y≤ z,  necessarily satisfies the following equations: 	



Łukasiewicz logic (presented as in D.M., 2018) 
 Łukasiew

icz 

1=x(yx) 
1=(xy)((yz)(xz)) 
1=((xy)y)((yx)x) 
1=(¬y¬x)(xy) 
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Łukasiewicz logic (presented as in D.M., 2018) 
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1=(¬y¬x)(xy) 
1=(¬yy)y (Consequentia Mirabilis) 

B
oole 

 Łukasiew
icz 
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1=(xy)((yz)(xz)) 
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the intriguing basic tautology 	



the Łukasiewicz axiom ((xy)y)=((yx)x)  

((xy)y)((yx)x) 

in boolean logic says xVy=yVx 	





the intriguing basic tautology 	



the Łukasiewicz axiom ((xy)y)=((yx)x)  

((xy)y)((yx)x) 

in boolean logic says xVy=yVx 	



in  Łukasiewicz logic this has a deeper meaning: 	


it says that implication is continuous 	





THEOREM (ROSE-ROSSER 1958)  	


Syntactic tautologies  coincide with semantic tautologies.	



some nontrivial results ... 
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some nontrivial results ... 

COROLLARY  (D.M., Theoretical Computer Science, 1987)   	


The tautology problem of Łukasiewicz logic is coNP-complete.	





THEOREM (ROSE-ROSSER 1958)  	


Syntactic tautologies  coincide with semantic tautologies.	



some nontrivial results ... 

COROLLARY  (D.M., Theoretical Computer Science, 1987)   	


The tautology problem of Łukasiewicz logic is coNP-complete.	



For very recent computational applications, see the paper  	


D.M.  “WORD PROBLEMS IN ELLIOTT MONOIDS”, 	


Advances in Mathematics, 335 (2018) 343-371.	



DOI 10.1016/j.aim.2018.07.015   
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DEFINITION A formula ψ  is a  syntactic consequence of a set Θ of 
formulas if it is obtainable from the syntactic tautologies and Θ via 
finitely many applications of modus ponens. 	



DEFINITION  A formula ψ  is a  (Bolzano-Tarski) semantic 
consequence of a set Θ of formulas every valuation giving value 1 to 
all formulas in Θ also gives value 1 to ψ. 	



FACT  Syntactic consequences differ from  
(Bolzano-Tarski) semantic consequences. 	



... and an embarassing fact 





The role of prime ideals 

My failure to prove the completeness in 1958  using	


MV-algebras was a disappointment to me at that time. I tried	


that year and even after I left Cornell, but with no success. My 
mistake was in trying to pound the thing out by sticking to 
maximal ideals.	


...	


But a lucky break occurred when Dana Scott realized, with far-
reaching insight, that there is a notion of prime ideals in MV-
algebras (a notion I had not considered until then).	



 C. C. CHANG,   The writing of the MV-algebras,   Studia Logica, 
61 (1998)  3-6.   





F1 consists of all piecewise linear continuous 
[0,1]-valued functions with integer 
coefficients, defined over [0,1]. (One-variable 
McNaughton functions)       	



The free one-generator 
MV-algebra  F1 



The free two-generator MV-algebra  F2 

F2 consists of all piecewise linear continuous [0,1]-valued 
functions with integer coefficients, defined over the [0,1]2.          	



Piecewise linearity ensures that all directional derivatives exist         	





folklore on prime ideals of MV-algebras 
DEFINITION  An ideal J of A is prime if A/J is totally ordered.	
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FACT  All ideals containing a prime ideal occur in a chain. Thus 
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folklore on prime ideals of MV-algebras 

FACT  The prime ideals above a minimal prime of any n-generator 
MV-algebra form a chain of length ≤ n.	



DEFINITION  An ideal J of A is prime if A/J is totally ordered.	



FACT  Every ideal in the intersection of the primes above it.	



(This innocent looking fact is to the effect the quotient operation  
ff/P  for prime ideals fully controls the deductive closure 
operation, and foreshadows a complete semantic consequence.)	





0 1 1/2 2/3 1/3 

the prime ideals of the free MV-algebra F1 

rational irrational 

depth 0 

depth 1 



Prime ideals of depth 0 are just maximal ideals, and are in one-one 
correspondence with points of [0,1]n	



the prime ideals of free MV-algebras 
(M.Busaniche, D.M., Ann. Pure Appl. Logic 147, 2007) 
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uniquely determines a direction d in  Rn   	
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Prime ideals of depth 0 are just maximal ideals, and are in one-one 
correspondence with points of [0,1]n	



Each prime ideal P of Krull depth 1 is below a single maximal M, and  
uniquely determines a direction d in  Rn   	



Each prime ideal P’ of depth 2 is below a single prime P of depth 1 
and uniquely determines a direction d’ ⊥ d  in  Rn   	



THEOREM  The prime ideals of the free MV-algebra Fn are labelled 
by points of  [0,1]n  together with orthonormal bases of Rn  	



the prime ideals of free MV-algebras 
(M.Busaniche, D.M., Ann. Pure Appl. Logic 147, 2007) 



Krull depth 0 

valuation 

maximal ideal 
point in [0,1]n 

kernel 

intersection of the zerosets of all members of the ideal  

point evaluation 



Krull depth 1 

depth 1 prime ideal 

x point in [0,1]n together with a unit vector d in Rn 

all functions f 
with f(x)=0, and 
∂f(x)/∂d =0  

the only zeroset 
and zerodirection 
common to all 
functions in the 
prime ideal 



Krull depth 2 

depth 2 prime ideal 

point x in [0,1]n and a pair of unit vectors d⊥d’ in Rn 

all functions f 
with f(x)=0,  
∂(x)/∂d =0, and  
∂(y)/∂d’ =0 for 
all y in x+εd  

the only  zeroset, 
zerodirection and 

perpendicular 
zerodirection 

common to all 
members of the 

ideal 



the prime ideals of free MV-algebras 
(M.Busaniche, D.M., Ann. Pure Appl. Logic 147, 2007) 



a McNaughton function f  belongs to a prime ideal of depth 0 (i.e., a 
maximal M, in correspondence with a point x) iff f vanishes at x	
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maximal M, in correspondence with a point x) iff f vanishes at x	



f  belongs to a prime ideal P immediately below M  iff f belongs to 
M and  ∂f(x)/∂d = 0  with d the direction associated to P 	
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f belongs to a prime ideal P’ immediately below P  iff f  belongs to P  
and ∂f(x+εd)/∂d’ = 0 for all small  ε > 0, where d’ ⊥ d , is the 
direction associated to P’.  ... ... ...  	
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maximal M, in correspondence with a point x) iff f vanishes at x	
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f belongs to a prime ideal P’ immediately below P  iff f  belongs to P  
and ∂f(x+εd)/∂d’ = 0 for all small  ε > 0, where d’ ⊥ d , is the 
direction associated to P’.  ... ... ...  	



the prime ideals of free MV-algebras 
(M.Busaniche, D.M., Ann. Pure Appl. Logic 147, 2007) 

this shows that the quotient operation  ff/P  for prime ideals P has 
a quantitative content, generalizing the quotient operation ff/M  
for M a maximal, which amounts to a classical evaluation  



a one-dimensional example 
explaining the difference 

between syntactic 
consequence and Bolzano-

Tarski consequence in infinite-
valued Łukasiewicz logic     
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the McNaughton 
functions of a 
set F of formulas 

a new function p  
coded by the formula  ¬X 

p	
  



beyond  the Bolzano-Tarski paradigm 

F={p1, p2,...} is a set of McNaughton 
functions pi=1 on a right 
neighbourhood of the origin 0	



s   is  a stable consequence of F,  because  
s=1  over a right neighbourhood of 0. 
Remarkably,  s is also a syntactic 
consequence of the pi 	



p is not a stable consequence of F, 
because p is not equal to 1 on a 
neighbourhood of 0. 	



However, p  is a Bolzano-Tarski 
consequence of F, because t(0)= 1.  	



stable 

s 

p 



p belongs to all maximal ideals to which 
each pi belongs, but fails to belong to 
the prime ideal of all McNaughton 
functions which have zero derivative 
at the origin. All pi have 0 derivative at 
the origin.	



Valuations induced by maximal ideals 
are not sufficient to check consequence	



One needs a richer class of valuations, 
also taking into account the stability 
properties common to all premises    	



beyond  the Bolzano-Tarski paradigm 

stable 

s 

p 



refining the Bolzano-
Tarski paradigm in 

infinite-valued 
Łukasiewicz logic     



the dynamics of a material point  
is controlled by position and speed 



the dynamics of a material point  
is controlled by position and speed 

the dynamics of a rigid body is 
controlled by more parameters: 
e.g., angular speed along each axis. 



the deductive closure of a set F in Łukasiewicz logic needs: 
—pointwise evaluation of  f  over the modelset of F 
—evaluation of derivatives along all pairwise orthogonal 
directions associated to the prime ideals containing  F. 

the dynamics of a material point  
is controlled by position and speed 

the dynamics of a rigid body is 
controlled by more parameters: 
e.g., angular speed along each axis. 



classical consequence (static evaluation)  

	

 f   is a Bolzano-Tarski consequence of a set F of premises 
if for every model   (= valuation)   v,	



                                 p(v) = 1   for all p in F,  	



f(v)=1  



f   is a stable consequence of a set F of premises if for every 
valuation   v  and perturbation  dv  in the valuation space, 	



p(v) = 1   and     p(v+dv) = 0   for all   p   in F  	



 f(v+dv) = 1  	



stable consequence (perturbative evaluation)  



f   is a stable consequence of a set F of premises if for every 
valuation   v  and direction  d  in the valuation space, 	



p(v) = 1   and     ∂p(v)/∂d = 0   for all   p   in F  	



 f(v) = 1  and   ∂f(v)/∂d = 0	



stable consequence (quantitative evaluation)  

derivatives arise from the classification of prime ideals 



the completeness theorem 

THEOREM (D.M. 2013, Outstanding Contributions to Logic, 6, to Petr Hàjek)	


    The following conditions are equivalent for f:	


•  f   is a stable consequence of a set   F   of premises 	


•  f is a syntactic consequence of   F,   i.e.,  f  is obtainable by finitely 

many applications of  modus ponens from  (F  ∪  the tautologies)	



•  f  belongs to each prime ideal that contains  F.	





the completeness theorem 

THEOREM (D.M. 2013, Outstanding Contributions to Logic, 6, to Petr Hàjek)	


    The following conditions are equivalent for f:	


•  f   is a stable consequence of a set   F   of premises 	


•  f is a syntactic consequence of   F,   i.e.,  f  is obtainable by finitely 

many applications of  modus ponens from  (F  ∪  the tautologies)	



•  f  belongs to each prime ideal that contains  F.	



COROLLARY  Stable consequence is  finitary: if  f  is a stable 
consequence of F then f is a stable consequence of a finite subset of F  	





Differential valuations make sense because the valuation space is a cube 
[0,1]n, and formulas code [0,1]-valued functions over [0,1]n  having all 
directional derivatives.	
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Differential valuations make sense because the valuation space is a cube 
[0,1]n, and formulas code [0,1]-valued functions over [0,1]n  having all 
directional derivatives.	



Geometrically, stable consequence states that whevever all premises are 
true under a perturbation of their models,  so is the conclusion.	



Algebraically,  s is a stable consequence of a set F of premises iff s is a 
member of every prime ideal P⊇F of the free algebra.	



In the boolean fragment,  stable consequence = Bolzano-Tarski 
consequence, stating that s is a member of every maximal ideal P 
containing F. The valuation space {0,1}n is totally disconnected. 	



stable consequence and differential evaluations  



a recipe for semantics to meet syntax in other logics 

one may single out a class K of congruences having the following 
irreducibility property:  every congruence is an intersection of  
congruences in the class K.  In general, maximals won’t do.   
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quotient map  f   f/k  for k a congruence in the special class  K.   
This is what one expects from a valuation.   



a recipe for semantics to meet syntax in other logics 

one may single out a class K of congruences having the following 
irreducibility property:  every congruence is an intersection of  
congruences in the class K.  In general, maximals won’t do.   

one may then look for the quantitative/algebraic  content  of the 
quotient map  f   f/k  for k a congruence in the special class  K.   
This is what one expects from a valuation.   

Traditional candidates for K:  maximal ideals (in the lucky case of 
boolean algebras and finite-valued logics),  prime ideals, finitely 
subdirectly irreducible ideals or congruences,...   
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