Semantic and Syntactic Consequence

to Roberto Cignoli in memoriam

DANIELE MUNDICI

Department of Mathematics and Computer Science, University of Florence mundici@math.unifi.it

syntactic tautologies in boolean logic

DEFINITION A boolean *syntactic tautology* is a formula that can be derived from the following *basic tautologies* via substitution and modus ponens:

syntactic tautologies in wide generality

DEFINITION A formula f is a *syntactic tautology* if it is obtainable (typically from some *basic tautologies*) by some mechanical procedure.

semantic tautologies in boolean logic

DEFINITION A boolean *semantic tautology* is a formula f such that every **valuation** into the two element boolean algebra $\{0,1\}$ (the *matrix* of boolean logic) evaluates f to 1.

semantic tautologies in wide generality

DEFINITION A formula *f* is a *semantic tautology* of L if every **valuation** gives value 1 to *f*.

semantic tautologies in wide generality

DEFINITION A formula *f* is a *semantic tautology* of L if every **valuation** gives value 1 to *f*.

we assume there are algebras of the same type (*matrices*), in such a way that *valuations* are homomorphisms of the term algebra of L into a matrix; each matrix has just *one constant* 1 designated for "true"

semantic tautologies in wide generality

DEFINITION A formula *f* is a *semantic tautology* of L if every **valuation** gives value 1 to *f*.

we assume there are algebras of the same type (*matrices*), in such a way that *valuations* are homomorphisms of the term algebra of L into a matrix; each matrix has just *one constant* 1 designated for "true"

DESIDERATUM Syntactic and semantic tautologies must coincide.

completeness theorem for boolean tautologies

THEOREM (fulfilling the Desideratum) *Boolean syntactic and semantic tautologies coincide*.

completeness theorem for boolean tautologies

THEOREM (fulfilling the Desideratum) *Boolean syntactic and semantic tautologies coincide*.

Next, taking inspiration from Algebra, let us consider the main theme of this talk, namely **CONSEQUENCE**

ALGEBRA: two ways to generate an ideal

VIA RULES: the ideal generated by a set *F* of elements of an algebra *A* is the set of elements obtainable from *F* via finitely many applications of certain operations and relations of *A*. (*Depends on the definition of these operations and relations*)

ALGEBRA: two ways to generate an ideal

VIA RULES: the ideal generated by a set *F* of elements of an algebra *A* is the set of elements obtainable from *F* via finitely many applications of certain operations and relations of *A*. (*Depends on the definition of these operations and relations*)

VIA SPECIAL IDEALS: an element *g* belongs to the ideal generated by a set *F* of elements of an algebra *A* if for every "irreducible" ideal *I* such that *f/I*=0 for all *f* in *F*, we also have *g/I*=0. (*Depends on the definition of "irreducible ideal", or "irreducible congruence"*)

LOGIC: two definitions of "deductive closure"

VIA RULES: ψ belongs to the deductive closure of a set of formulas if it is obtainable from a subset of *F* via finitely many "mechanical" manipulations

(typically, involving **time-honored "rules"** such as "modus ponens", [if each matrix has an operation \rightarrow obeying the following *minimum requirement for an implication*: $(x \rightarrow (y \rightarrow z)) = (y \rightarrow (x \rightarrow z))$]

LOGIC: two definitions of "deductive closure"

VIA RULES: ψ belongs to the deductive closure of a set of formulas if it is obtainable from a subset of *F* via finitely many "mechanical" manipulations

(typically, involving **time-honored "rules"** such as "modus ponens", [if each matrix has an operation \rightarrow obeying the following *minimum requirement for an implication*: $(x \rightarrow (y \rightarrow z)) = (y \rightarrow (x \rightarrow z))$]

VIA VALUATIONS/MODELS ψ belongs to the deductive closure of a set Θ of formulas if every valuation assigning 1 to every element θ of Θ also assigns 1 to ψ .

LOGIC: two definitions of "deductive closure"

VIA RULES: ψ belongs to the deductive closure of a set of formulas if it is obtainable from a subset of *F* via finitely many "mechanical" manipulations

(typically, involving **time-honored "rules"** such as "modus ponens", [if each matrix has an operation \rightarrow obeying the following *minimum requirement for an implication*: $(x \rightarrow (y \rightarrow z)) = (y \rightarrow (x \rightarrow z))$]

VIA VALUATIONS/MODELS ψ belongs to the deductive closure of a set Θ of formulas if every valuation assigning 1 to every element θ of Θ also assigns 1 to ψ .

rules are 2500 years older than valuations

The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence $X.^{\dagger}$

* "After the original of this paper had appeared in print, H. Scholz in his article
* 'Die Wissenschaftslehre Bolzanos, Eine Jahrhundert-Betrachtung', Abhandlungen der Fries'schen Schule, new series, vol. 6, pp. 399-472 (see in particular p. 472, footnote 58) pointed out a far-reaching analogy between this definition of consequence and the one suggested by B. Bolzano about a hundred years earlier."

[Note added by Tarski in English in A. Tarski, "Logic, Semantics, Metamathematics", Oxford (1956) p. 417]

Semantic consequence (first half of the XXth century)

The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence $X.^{\dagger}$

Semantic consequence (first half of the XXth century)

The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence $X.^{\dagger}$

In first-order logic, "models" have a well known definition. In our propositional framework, "models" are valuations:

Semantic consequence (first half of the XXth century)

The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence $X.^{\dagger}$

In first-order logic, "models" have a well known definition. In our propositional framework, "models" are valuations:

REFORMULATION (for logics given by matrices) A formula ψ is a *semantic consequence* of a set Θ of formulas if every valuation that gives value 1 to all formulas of Θ also gives value 1 to ψ .

The boolean case

DEFINITION In boolean logic, a formula ψ is a *syntactic consequence* of a set Θ of formulas if it can be derived from the syntactic tautologies and Θ via finitely many applications of "modus ponens"

DEFINITION In boolean logic, a formula ψ is a *(Bolzano-Tarski) semantic consequence* of a set Θ of formulas if every valuation that gives value 1 to all formulas of Θ also gives value 1 to ψ .

DEFINITION In boolean logic, a formula ψ is a *(Bolzano-Tarski) semantic consequence* of a set Θ of formulas if every valuation that gives value 1 to all formulas of Θ also gives value 1 to ψ .

THEOREM In boolean logic syntactic consequence coincides with Bolzano-Tarski semantic sequence.

This theorem is misldeading

This completeness theorem depends on the following facts:

—"valuations" are quotients by (dual) maximal ideals (filters) of the free boolean algebra

—maximal ideals = meet irreducible ideals = prime ideals.

In algebraic logic, as well as in ring theory, these identities are exceptional.

Thus e.g., in Łukasiewicz logic, adoption of the Bolzano-Tarski paradigm leads to a gap between syntactic and semantic consequence.

Łukasiewicz logic (presented as in D.M., 2018)

THEOREM Any algebra $([0,1], 0, \neg, \rightarrow)$ with a **continuous** binary operation \rightarrow having the properties $x \rightarrow (y \rightarrow z) = x \rightarrow (y \rightarrow z)$ and $y \rightarrow z = 1$ iff $y \le z$, necessarily satisfies the following equations:

Łukasiewicz logic (presented as in D.M., 2018)

THEOREM Any algebra $([0,1], 0, \neg, \rightarrow)$ with a **continuous** binary operation \rightarrow having the properties $x \rightarrow (y \rightarrow z) = x \rightarrow (y \rightarrow z)$ and $y \rightarrow z = 1$ iff $y \le z$, necessarily satisfies the following equations:

the Łukasiewicz axiom $((x \rightarrow y) \rightarrow y) = ((y \rightarrow x) \rightarrow x)$

the intriguing basic tautology

 $((x \rightarrow y) \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x)$

in boolean logic says xVy=yVx

the Łukasiewicz axiom $((x \rightarrow y) \rightarrow y) = ((y \rightarrow x) \rightarrow x)$

the intriguing basic tautology

 $((x \rightarrow y) \rightarrow y) \rightarrow ((y \rightarrow x) \rightarrow x)$

in boolean logic says xVy=yVx

in Łukasiewicz logic this has a deeper meaning: it says that implication is continuous

some nontrivial results ...

THEOREM (ROSE-ROSSER 1958) Syntactic tautologies coincide with semantic tautologies.

some nontrivial results ...

THEOREM (ROSE-ROSSER 1958) Syntactic tautologies coincide with semantic tautologies.

COROLLARY (D.M., Theoretical Computer Science, 1987) *The tautology problem of Łukasiewicz logic is coNP-complete*.

some nontrivial results ...

THEOREM (ROSE-ROSSER 1958) Syntactic tautologies coincide with semantic tautologies.

COROLLARY (D.M., Theoretical Computer Science, 1987) *The tautology problem of Łukasiewicz logic is coNP-complete*.

For very recent computational applications, see the paper D.M. "WORD PROBLEMS IN ELLIOTT MONOIDS", *Advances in Mathematics*, 335 (2018) 343-371. DOI 10.1016/j.aim.2018.07.015

... and an embarassing fact

DEFINITION A formula ψ is a *syntactic consequence* of a set Θ of formulas if it is obtainable from the syntactic tautologies and Θ via finitely many applications of modus ponens.

... and an embarassing fact

DEFINITION A formula ψ is a *syntactic consequence* of a set Θ of formulas if it is obtainable from the syntactic tautologies and Θ via finitely many applications of modus ponens.

DEFINITION A formula ψ is a (*Bolzano-Tarski*) semantic consequence of a set Θ of formulas every valuation giving value 1 to all formulas in Θ also gives value 1 to ψ .

... and an embarassing fact

DEFINITION A formula ψ is a *syntactic consequence* of a set Θ of formulas if it is obtainable from the syntactic tautologies and Θ via finitely many applications of modus ponens.

DEFINITION A formula ψ is a (*Bolzano-Tarski*) semantic consequence of a set Θ of formulas every valuation giving value 1 to all formulas in Θ also gives value 1 to ψ .

FACT Syntactic consequences differ from (Bolzano-Tarski) semantic consequences.

We will explain the reasons for this failure. By refining the **Bolzano-Tarski** paradigm, we will fix the problem

The role of prime ideals

My failure to prove the completeness in 1958 using MV-algebras was a disappointment to me at that time. I tried that year and even after I left Cornell, but with no success. My mistake was in trying to pound the thing out by sticking to maximal ideals.

•••

But a lucky break occurred when Dana Scott realized, with farreaching insight, that there is a notion of prime ideals in MValgebras (a notion I had not considered until then).

C. C. CHANG, *The writing of the MV-algebras*, Studia Logica, 61 (1998) 3-6.

free MV-algebras and their prime spectral spaces
The free one-generator MV-algebra F_1

F₁ consists of all piecewise linear continuous [0,1]-valued functions with integer coefficients, defined over [0,1]. (One-variable McNaughton functions)

The free two-generator M

F₂ consists of all piecewise linear continueu functions with integer coefficients, defined over a

0.75° 0.5

0.25

0.6

0.2

0.6

Piecewise linearity ensures that all directional derivatives exist

DEFINITION An ideal J of A is *prime* if A/J is totally ordered.

DEFINITION An ideal *J* of *A* is *prime* if *A*/*J* is totally ordered.

FACT All ideals containing a prime ideal occur in a chain. Thus above any prime ideal there is precisely one maximal.

DEFINITION An ideal *J* of *A* is *prime* if *A*/*J* is totally ordered.

FACT All ideals containing a prime ideal occur in a chain. Thus above any prime ideal there is precisely one maximal.

FACT The prime ideals above a minimal prime of any n-generator *MV*-algebra form a chain of length $\leq n$.

DEFINITION An ideal *J* of *A* is *prime* if *A*/*J* is totally ordered.

FACT All ideals containing a prime ideal occur in a chain. Thus above any prime ideal there is precisely one maximal.

FACT The prime ideals above a minimal prime of any n-generator *MV*-algebra form a chain of length $\leq n$.

FACT Every ideal in the intersection of the primes above it.

DEFINITION An ideal *J* of *A* is *prime* if *A*/*J* is totally ordered.

FACT All ideals containing a prime ideal occur in a chain. Thus above any prime ideal there is precisely one maximal.

FACT The prime ideals above a minimal prime of any n-generator *MV*-algebra form a chain of length $\leq n$.

FACT Every ideal in the intersection of the primes above it.

(This innocent looking fact is to the effect the quotient operation $f \rightarrow f/P$ for prime ideals fully controls the deductive closure operation, and foreshadows a complete semantic consequence.)

the prime ideals of the free MV-algebra F_1

• irrational

rational

Prime ideals of depth 0 are just maximal ideals, and are in one-one correspondence with points of $[0,1]^n$

Prime ideals of depth 0 are just maximal ideals, and are in one-one correspondence with points of $[0,1]^n$

Each prime ideal *P* of Krull depth 1 is below a single maximal *M*, and uniquely determines a direction d in \mathbb{R}^n

Prime ideals of depth 0 are just maximal ideals, and are in one-one correspondence with points of $[0,1]^n$

Each prime ideal *P* of Krull depth 1 is below a single maximal *M*, and uniquely determines a direction d in \mathbb{R}^n

Each prime ideal *P*' of depth 2 is below a single prime *P* of depth 1 and uniquely determines a direction $d' \perp d$ in \mathbb{R}^n

Prime ideals of depth 0 are just maximal ideals, and are in one-one correspondence with points of $[0,1]^n$

Each prime ideal *P* of Krull depth 1 is below a single maximal *M*, and uniquely determines a direction d in \mathbb{R}^n

Each prime ideal *P*' of depth 2 is below a single prime *P* of depth 1 and uniquely determines a direction $d' \perp d$ in \mathbb{R}^n

THEOREM The prime ideals of the free MV-algebra F_n are labelled by points of $[0,1]^n$ together with orthonormal bases of \mathbb{R}^n

Krull depth 0

intersection of the zerosets of all members of the ideal

Krull depth 1

x point in [0,1]ⁿ together with a unit vector d in Rⁿ

all functions f with f(x)=0, and ∂f(x)/∂d =0 the only zeroset and zerodirection common to all functions in the prime ideal

depth 1 prime ideal

Krull depth 2

point x in [0,1]ⁿ and a pair of unit vectors $d \perp d'$ in \mathbb{R}^n

all functions f with f(x)=0, ∂(x)/∂d =0, and ∂(y)/∂d' =0 for all y in x+εd the only zeroset, zerodirection and perpendicular zerodirection common to all members of the ideal

depth 2 prime ideal

a McNaughton function *f* belongs to a prime ideal of depth 0 (i.e., a maximal *M*, in correspondence with a point *x*) iff *f* vanishes at *x*

a McNaughton function f belongs to a prime ideal of depth 0 (i.e., a maximal M, in correspondence with a point x) iff f vanishes at x

f belongs to a prime ideal *P* immediately below *M* iff *f* belongs to M and $\partial f(x)/\partial d = 0$ with *d* the direction associated to *P*

a McNaughton function f belongs to a prime ideal of depth 0 (i.e., a maximal M, in correspondence with a point x) iff f vanishes at x

f belongs to a prime ideal *P* immediately below *M* iff *f* belongs to M and $\partial f(x)/\partial d = 0$ with *d* the direction associated to *P*

f belongs to a prime ideal *P*' immediately below *P* iff *f* belongs to *P* and $\partial f(x+\varepsilon d)/\partial d' = 0$ for all small $\varepsilon > 0$, where $d' \perp d$, is the direction associated to *P*'....

a McNaughton function f belongs to a prime ideal of depth 0 (i.e., a maximal M, in correspondence with a point x) iff f vanishes at x

f belongs to a prime ideal *P* immediately below *M* iff *f* belongs to M and $\partial f(x)/\partial d = 0$ with *d* the direction associated to *P*

f belongs to a prime ideal *P*' immediately below *P* iff *f* belongs to *P* and $\partial f(x+\varepsilon d)/\partial d' = 0$ for all small $\varepsilon > 0$, where $d' \perp d$, is the direction associated to *P*'.

this shows that the quotient operation $f \rightarrow f/P$ for prime ideals *P* has a **quantitative** content, generalizing the quotient operation $f \rightarrow f/M$ for *M* a maximal, which amounts to a classical **evaluation**

a one-dimensional example explaining the difference between syntactic consequence and Bolzano-Tarski consequence in infinitevalued Łukasiewicz logic

beyond the Bolzano-Tarski paradigm

- F={p₁, p₂,...} is a set of McNaughton functions p_i=1 on a right neighbourhood of the origin 0
- s is a stable consequence of F, because
 s=1 over a right neighbourhood of 0.
 Remarkably, s is also a syntactic
 consequence of the p_i
- p is not a stable consequence of F, because p is not equal to 1 on a neighbourhood of 0.
- However, p is a Bolzano-Tarski consequence of F, because t(0)= 1.

stable

Bolzano-Tarski not stable

beyond the Bolzano-Tarski paradigm

- p belongs to all maximal ideals to which each p_i belongs, but fails to belong to the prime ideal of all McNaughton functions which have zero derivative at the origin. All p_i have 0 derivative at the origin.
- Valuations induced by maximal ideals are not sufficient to check consequence
- One needs a richer class of valuations, also taking into account the stability properties common to all premises

stable

Bolzano-Tarski not stable refining the Bolzano-Tarski paradigm in infinite-valued Łukasiewicz logic

the dynamics of a material point is controlled by position and speed

the dynamics of a material point is controlled by position and speed

the dynamics of a rigid body is controlled by more parameters: e.g., angular speed along each axis.

the dynamics of a material point is controlled by position and speed

the dynamics of a rigid body is controlled by more parameters: e.g., angular speed along each axis.

the deductive closure of a set *F* in Łukasiewicz logic needs: —pointwise evaluation of f over the modelset of F —evaluation of derivatives along all pairwise orthogonal directions associated to the prime ideals containing *F*.

classical consequence (static evaluation)

f is a **Bolzano-Tarski consequence** of a set *F* of premises if for every model (= valuation) v,

$$p(v) = 1$$
 for all p in F,
 $f(v)=1$

stable consequence (perturbative evaluation)

f is a stable consequence of a set F of premises if for every valuation v and perturbation dv in the valuation space, p(v) = 1 and p(v+dv) = 0 for all p in F f(v+dv) = 1

stable consequence (quantitative evaluation)

f is a stable consequence of a set F of premises if for every valuation v and direction d in the valuation space, p(v) = 1 and $\partial p(v)/\partial d = 0$ for all p in F f(v) = 1 and $\partial f(v)/\partial d = 0$

derivatives arise from the classification of prime ideals
the completeness theorem

THEOREM (D.M. 2013, Outstanding Contributions to Logic, 6, to Petr Hàjek) *The following conditions are equivalent for f:*

- f is a stable consequence of a set F of premises
- *f* is a syntactic consequence of F, i.e., f is obtainable by finitely many applications of modus ponens from ($F \cup$ the tautologies)
- *f* belongs to each prime ideal that contains *F*.

the completeness theorem

THEOREM (D.M. 2013, Outstanding Contributions to Logic, 6, to Petr Hàjek) *The following conditions are equivalent for f:*

- f is a stable consequence of a set F of premises
- *f* is a syntactic consequence of F, i.e., f is obtainable by finitely many applications of modus ponens from ($F \cup$ the tautologies)
- *f* belongs to each prime ideal that contains *F*.

COROLLARY Stable consequence is **finitary**: if f is a stable consequence of F then f is a stable consequence of a finite subset of F

Differential valuations make sense because the valuation space is a cube $[0,1]^n$, and formulas code [0,1]-valued functions over $[0,1]^n$ having all directional **derivatives**.

Differential valuations make sense because the valuation space is a cube $[0,1]^n$, and formulas code [0,1]-valued functions over $[0,1]^n$ having all directional **derivatives**.

Geometrically, stable consequence states that whevever all premises are true under a **perturbation** of their models, so is the conclusion.

Differential valuations make sense because the valuation space is a cube $[0,1]^n$, and formulas code [0,1]-valued functions over $[0,1]^n$ having all directional **derivatives**.

- Geometrically, stable consequence states that whevever all premises are true under a **perturbation** of their models, so is the conclusion.
- Algebraically, *s* is a stable consequence of a set F of premises iff *s* is a member of every **prime** ideal $P \supseteq F$ of the free algebra.

- Differential valuations make sense because the valuation space is a cube $[0,1]^n$, and formulas code [0,1]-valued functions over $[0,1]^n$ having all directional **derivatives**.
- Geometrically, stable consequence states that whevever all premises are true under a **perturbation** of their models, so is the conclusion.
- Algebraically, *s* is a stable consequence of a set F of premises iff *s* is a member of every **prime** ideal $P \supseteq F$ of the free algebra.
- In the boolean fragment, stable consequence = Bolzano-Tarski consequence, stating that *s* is a member of every **maximal** ideal P containing F. The valuation space $\{0,1\}^n$ is totally disconnected.

a recipe for semantics to meet syntax in other logics

one may single out a class \varkappa of congruences having the following **irreducibility** property: every congruence is an intersection of congruences in the class \varkappa . In general, maximals won't do.

a recipe for semantics to meet syntax in other logics

one may single out a class \varkappa of congruences having the following **irreducibility** property: every congruence is an intersection of congruences in the class \varkappa . In general, maximals won't do.

one may then look for the **quantitative/algebraic** content of the quotient map $f \rightarrow f/k$ for k a congruence in the special class \varkappa . This is what one expects from a **valuation**.

a recipe for semantics to meet syntax in other logics

one may single out a class \varkappa of congruences having the following **irreducibility** property: every congruence is an intersection of congruences in the class \varkappa . In general, maximals won't do.

one may then look for the **quantitative/algebraic** content of the quotient map $f \rightarrow f/k$ for k a congruence in the special class \varkappa . This is what one expects from a **valuation**.

Traditional candidates for \varkappa : maximal ideals (in the lucky case of boolean algebras and finite-valued logics), prime ideals, finitely subdirectly irreducible ideals or congruences,...

THANK YOU

TRENDS IN LOGIC - STUDIA LOGICA LIBRARY

2000

Algebraic Foundations of Many-valued Reasoning

by Roberto L.O. Cignoli, Itala M.L. D'Ottaviano and Daniele Mundici

KLUWER ACADEMIC PUBLISHERS

Trends in Logic 35

Daniele Mundici

Advanced Łukasiewicz calculus and MV-algebras

2011

