Undecidability of FL_e in the presence of structural rules

Gavin St. John

In collaboration with Nikolaos Galatos Contact: gavin.stjohn@du.edu University of Denver Department of Mathematics

> 4th SYSMICS Workshop Chapman University Orange, California

17 September 2018

Application 6. Residuated frames and (un)decidability

Gavin St. John

In collaboration with Nikolaos Galatos Contact: gavin.stjohn@du.edu University of Denver Department of Mathematics

> 4th SYSMICS Workshop Chapman University Orange, California

17 September 2018

Residuated Lattices

Definition

A (commutative) **residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \backslash, /, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \backslash z \iff x \leq z/y,$$

where \leq is the induced lattice order.

Residuated Lattices

Definition

A (commutative) **residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \backslash, /, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x \cdot y \leq z \iff y \leq x \backslash z \iff x \leq z/y,$$

where \leq is the induced lattice order.

(Commutative) residuated lattices form a variety, denoted by $(\mathcal{C})\mathcal{RL}.$

Residuated Lattices

Definition

A (commutative) **residuated lattice** is an algebraic structure $\mathbf{R} = (R, \lor, \land, \cdot, \backslash, /, 1)$, such that

- (R, \lor, \land) is a lattice
- $(R, \cdot, 1)$ is a (commutative) monoid
- For all $x, y, z \in R$

$$x\cdot y \leq z \iff y \leq x\backslash z \iff x \leq z/y,$$

where \leq is the induced lattice order.

(Commutative) residuated lattices form a variety, denoted by $(C)\mathcal{RL}$. If [r] is a rule (axiom), then $(C)\mathcal{RL} + [r]$ denotes the subvariety by adjoining [r].

Undecidable Q.Eq. Theory/	Decidable Q.Eq. Theory/
(Undecidable Deducibility)	(Decidable Deducibility)

Undecidable Q.Eq. Theory/	Decidable Q.Eq. Theory/
(Undecidable Deducibility)	(Decidable Deducibility)
$\mathcal{RL}(FL)$	
CRL (FL _e)	

Undecidable Q.Eq. Theory/	Decidable Q.Eq. Theory/
(Undecidable Deducibility)	(Decidable Deducibility)
$\mathcal{RL}(FL)$	
CRL (FL _e)	
$\mathcal{RL} + [\mathbf{k}_n^m] (FL + [\mathbf{k}_n^m]),$	
for $1 \le n < m \& 2 \le m < n$,	
	•

Undecidable Q.Eq. Theory/	Decidable Q.Eq. Theory/
(Undecidable Deducibility)	(Decidable Deducibility)
$\mathcal{RL}\left(FL ight)$	
$\mathcal{CRL}\left(FL_{e}\right)$	
$\mathcal{RL} + [\mathbf{k}_n^m] \ (FL + [\mathbf{k}_n^m]),$	
for $1 \le n < m \& 2 \le m < n$,	
	$\mathcal{CRL} + [\mathrm{k}_n^m] \; (FL_{e} + [\mathrm{k}_n^m])$

Undecidable Q.Eq. Theory/	Decidable Q.Eq. Theory/
(Undecidable Deducibility)	(Decidable Deducibility)
$\mathcal{RL}\left(FL ight)$	
$\mathcal{CRL}\left(FL_{e}\right)$	
$\mathcal{RL} + [\mathbf{k}_n^m] \ (FL + [\mathbf{k}_n^m]),$	
for $1 \le n < m \& 2 \le m < n$,	
	$\mathcal{CRL} + [\mathbf{k}_n^m] \left(FL_{e} + [\mathbf{k}_n^m]\right)$

 $[\mathbf{k}_n^m]$ denotes the knotted rule

$$\mathcal{RL}: \ (\forall x) \ x^n \le x^m \left| \begin{array}{c} \prod, \underbrace{\Pi, X, ..., X}_n, \Sigma \vdash \psi \\ \prod, \underbrace{X, ..., X}_n, \Sigma \vdash \psi \end{array} \right|$$

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

 \circ Galatos & Jipsen (2013) $CRL + [k_n^m] + \Gamma$, for any set Γ of $\langle \lor, \cdot, 1 \rangle$ -equations has the FEP, and hence decidability in the signature $\langle \leq, \cdot, 1 \rangle$ has been fully characterized.

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

• Galatos & Jipsen (2013) $CRL + [k_n^m] + \Gamma$, for any set Γ of

 $\langle \vee, \cdot, 1\rangle$ -equations has the FEP, and hence decidability in the signature $\langle \leq, \cdot, 1\rangle$ has been fully characterized.

Undecidability:

Shown by encoding a Halting Problem for *counter machines*, and utilizing the theory of *Residuated Frames* to guarantee the completeness of the encoding.

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

 \circ Galatos & Jipsen (2013) $\mathcal{CRL} + [\Bbbk_n^m] + \Gamma,$ for any set Γ of

 $\langle\vee,\cdot,1\rangle$ -equations has the FEP, and hence decidability in the signature $\langle\leq,\cdot,1\rangle$ has been fully characterized.

Undecidability:

- Shown by encoding a Halting Problem for *counter machines*, and utilizing the theory of *Residuated Frames* to guarantee the completeness of the encoding.
- We inspect (in)equations in the signature $\langle \lor, \cdot, 1 \rangle$.

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

 \circ Galatos & Jipsen (2013) $\mathcal{CRL} + [\mathbf{k}_n^m] + \Gamma,$ for any set Γ of

 $\langle \vee,\cdot,1\rangle$ -equations has the FEP, and hence decidability in the signature $\langle \leq,\cdot,1\rangle$ has been fully characterized.

Undecidability:

- Shown by encoding a Halting Problem for *counter machines*, and utilizing the theory of *Residuated Frames* to guarantee the completeness of the encoding.
- We inspect (in)equations in the signature ⟨∨, ·, 1⟩.
 Proof theoretically, such axioms correspond to inference rules, e.g.,

$$x \leq x^2 \vee 1 \iff \frac{\Pi, X, X, \Sigma \vdash \psi \quad \Pi, \Sigma \vdash \psi}{\Pi, X, \Sigma \vdash \psi}$$

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

 \circ Galatos & Jipsen (2013) $CRL + [k_n^m] + \Gamma$, for any set Γ of

 $\langle\vee,\cdot,1\rangle$ -equations has the FEP, and hence decidability in the signature $\langle\leq,\cdot,1\rangle$ has been fully characterized.

Undecidability:

- Shown by encoding a Halting Problem for *counter machines*, and utilizing the theory of *Residuated Frames* to guarantee the completeness of the encoding.
- We inspect (in)equations in the signature ⟨∨, ·, 1⟩.
 Proof theoretically, such axioms correspond to inference rules, e.g.,

$$x \leq x^2 \vee 1 \iff \frac{\Pi, X, X, \Sigma \vdash \psi \quad \Pi, \Sigma \vdash \psi}{\Pi, X, \Sigma \vdash \psi}$$

 \circ The work of Chvalovský & Horčík (2016) implies the undecidability for many such extensions in $\mathcal{RL}.$

Van Alten (2005) showed CRL + [k_n^m], for n ≠ m, has the *finite* embedability property (FEP).

 \circ Galatos & Jipsen (2013) $\mathcal{CRL} + [\mathbf{k}_n^m] + \Gamma,$ for any set Γ of

 $\langle\vee,\cdot,1\rangle$ -equations has the FEP, and hence decidability in the signature $\langle\leq,\cdot,1\rangle$ has been fully characterized.

Undecidability:

- Shown by encoding a Halting Problem for *counter machines*, and utilizing the theory of *Residuated Frames* to guarantee the completeness of the encoding.
- We inspect (in)equations in the signature ⟨∨, ·, 1⟩.
 Proof theoretically, such axioms correspond to inference rules, e.g.,

$$x \leq x^2 \vee 1 \iff \frac{\Pi, X, X, \Sigma \vdash \psi \quad \Pi, \Sigma \vdash \psi}{\Pi, X, \Sigma \vdash \psi}$$

The work of Chvalovský & Horčík (2016) implies the undecidability for many such extensions in *RL*.
So we restrict our investigation to the commutative case.

Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- \blacktriangleright $\backslash\!\!\backslash: W \times W' \to W'$ and $/\!\!/: W' \times W \to W'$ such that
- ▶ N is a **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w // v) iff $v N (u \setminus w)$.

Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure $\mathbf{W} = (W, W', N, \circ, \mathbb{N}, //, 1)$, s.t.

- $(W, \circ, 1)$ is a monoid and W' is a set.
- $N \subseteq W \times W'$, called the *Galois relation*, and
- \blacktriangleright $\backslash\!\!\backslash: W \times W' \to W'$ and $/\!\!/: W' \times W \to W'$ such that
- ▶ N is a **nuclear**, i.e. for all $u, v \in W$ and $w \in W'$, $(u \circ v) N w$ iff u N (w // v) iff $v N (u \\ w)$.

Define $\triangleright : \mathcal{P}(W) \to \mathcal{P}(W')$ and $\triangleleft : \mathcal{P}(W') \to \mathcal{P}(W)$ via $X^{\triangleright} = \{y \in W' : \forall x \in X, xNy\}$ for each $X \subseteq W$ and $Y^{\triangleleft} = \{x \in W : \forall y \in Y, xNy\}$ for each $Y \subseteq W'$. Then $(^{\triangleright}, ^{\triangleleft})$ is a Galois connection. So γ_N defined via $X \xrightarrow{\gamma_N} X^{\triangleright \triangleleft}$ is a closure operator on $\mathcal{P}(W)$. Fact: N is nuclear iff γ_N is a nucleus.

Theorem [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \backslash, /, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Theorem [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \backslash, /, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Comment

Certain structural properties (inference rules) for the nuclear relation N are preserved by the ordering relation \subseteq on \mathbf{W}^+ .

Theorem [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \backslash, /, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Comment

Certain structural properties (inference rules) for the nuclear relation N are preserved by the ordering relation \subseteq on \mathbf{W}^+ .

 \circ We can encode "desirable properties" we want a RL to satisfy in N.

Theorem [Galatos & Jipsen 2013]

 $\mathbf{W}^+ := (\gamma_N[\mathcal{P}(W)], \cup_{\gamma_N}, \cap, \circ_{\gamma_N}, \backslash, /, \gamma_N(\{1\})),$

$$X \cup_{\gamma_N} Y = \gamma_N(X \cup Y)$$
 and $X \circ_{\gamma_N} Y = \gamma_N(X \circ Y)$,

is a residuated lattice.

Comment

Certain structural properties (inference rules) for the nuclear relation N are preserved by the ordering relation \subseteq on \mathbf{W}^+ .

 \circ We can encode "desirable properties" we want a RL to satisfy in N.

 \circ In particular, (simple) rules in the signature $\langle \vee, \cdot, 1 \rangle$ are preserved via $(-)^+,$

Rules in the signature $\langle \vee, \cdot, 1 \rangle$ and Linearization

Any equation s = t in the signature $\langle \lor, \cdot, 1 \rangle$ is equivalent to some conjunction of **simple rules**.

(d)
$$x_1 \cdots x_n \leq \bigvee_{j=1}^m x_1^{d_j(1)} \cdots x_n^{d_j(n)},$$

where $d = \{d_1, ..., d_m\} \subset \mathbb{N}^n$.

Rules in the signature $\langle \vee, \cdot, 1 \rangle$ and Linearization

Any equation s = t in the signature $\langle \lor, \cdot, 1 \rangle$ is equivalent to some conjunction of **simple rules**.

(d)
$$x_1 \cdots x_n \leq \bigvee_{j=1}^m x_1^{d_j(1)} \cdots x_n^{d_j(n)},$$

where $d = \{d_1, ..., d_m\} \subset \mathbb{N}^n$. Such conjoins can be determined by the properties of CRL:

$$\blacktriangleright \ x \leq y \iff x \lor y = y$$

 $\blacktriangleright \ x \lor y \leq z \iff x \leq z \text{ and } y \leq z$

linearization

Rules in the signature $\langle \vee, \cdot, 1 \rangle$ and Linearization

Any equation s = t in the signature $\langle \lor, \cdot, 1 \rangle$ is equivalent to some conjunction of **simple rules**.

(d)
$$x_1 \cdots x_n \leq \bigvee_{j=1}^m x_1^{d_j(1)} \cdots x_n^{d_j(n)},$$

where $d = \{d_1, ..., d_m\} \subset \mathbb{N}^n$. Such conjoins can be determined by the properties of $C\mathcal{RL}$:

$$\blacktriangleright \ x \leq y \iff x \lor y = y$$

- $\blacktriangleright \ x \lor y \leq z \iff x \leq z \text{ and } y \leq z$
- linearization

E.g., the rule

$$(\forall u)(\forall v) \ u^2 v \leq u^3 \lor uv$$

is equivalent to, via the substitution $\sigma: u \xrightarrow{\sigma} x \lor y$ and $v \xrightarrow{\sigma} z$, $(\forall x)(\forall y)(\forall z) xyz < x^3 \lor x^2y \lor xy^2 \lor y^3 \lor xz \lor yz$

Simple rules and Residuated Frames

Let $\mathbf{W} = (W, W', N)$ be a residuated frame and (d) be the simple rule given by

$$x_1 \cdots x_n \le \bigvee_{j=1}^m x_1^{d_j(1)} \cdots x_n^{d_j(n)}.$$

Simple rules and Residuated Frames

Let $\mathbf{W} = (W, W', N)$ be a residuated frame and (d) be the simple rule given by

$$x_1 \cdots x_n \le \bigvee_{j=1}^m x_1^{d_j(1)} \cdots x_n^{d_j(n)}.$$

We say $\mathbf{W} \models [d]$ iff for all $u_1, ..., u_n \in W$ and $v \in W'$, the following inference rule is satisfied

$$\frac{\prod_{i=1}^{n} u_i^{d_1(i)} N v \cdots \prod_{i=1}^{n} u_i^{d_m(i)} N v}{\prod_{i=1}^{n} u_i N v}$$
[d]

.

Simple rules and Residuated Frames

Let $\mathbf{W}=(W,W',N)$ be a residuated frame and (d) be the simple rule given by

$$x_1 \cdots x_n \le \bigvee_{j=1}^m x_1^{d_j(1)} \cdots x_n^{d_j(n)}.$$

We say $\mathbf{W} \models [d]$ iff for all $u_1, ..., u_n \in W$ and $v \in W'$, the following inference rule is satisfied

$$\frac{\prod_{i=1}^{n} u_i^{d_1(i)} N v \cdots \prod_{i=1}^{n} u_i^{d_m(i)} N v}{\prod_{i=1}^{n} u_i N v}$$
[d]

Proposition [Galatos & Jipsen 2013]

All simple rules are preserved by $(-)^+$. In particular,

$$\mathbf{W} \models [\mathsf{d}] \text{ iff } \mathbf{W}^+ \models (\mathsf{d}).$$

.

A **presentation** for \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).

A **presentation** for \mathcal{L} is a pair $\langle X, E \rangle$ where

- ► X is a set of *generators*, and
- E is a set of equations over T(X).

If both X and E are finite, we call the presentation $\langle X,E\rangle$ finite.

A **presentation** for \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of *generators*, and
- E is a set of equations over T(X).
- If both X and E are finite, we call the presentation $\langle X,E\rangle$ finite.
 - We denote the conjunction of equations in E by &E.

A **presentation** for \mathcal{L} is a pair $\langle X, E \rangle$ where

- ► X is a set of *generators*, and
- E is a set of equations over T(X).
- If both X and E are finite, we call the presentation $\langle X,E\rangle$ finite.
 - We denote the conjunction of equations in E by &E.

We say \mathcal{V} has an **undecidable word problem** if there exists a finite presentation $\langle X, E \rangle$ such that there is no algorithm deciding whether the q.e. (& $E \implies s = t$) holds in \mathcal{V} having $s, t \in T(X)$ as inputs.

A **presentation** for \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).
- If both X and E are finite, we call the presentation $\langle X,E\rangle$ finite.
 - We denote the conjunction of equations in E by &E.

We say \mathcal{V} has an **undecidable word problem** if there exists a finite presentation $\langle X, E \rangle$ such that there is no algorithm deciding whether the q.e. (& $E \implies s = t$) holds in \mathcal{V} having $s, t \in T(X)$ as inputs.

Or equivalently, there is a finitely presented algebra $\mathbf{A} \in \mathcal{V}$ generated by X such that the following set is undecidable:

$$\{(s,t)\in T(X)^2: \mathbf{A}\models s=t\}.$$

A **presentation** for \mathcal{L} is a pair $\langle X, E \rangle$ where

- X is a set of generators, and
- E is a set of equations over T(X).
- If both X and E are finite, we call the presentation $\langle X,E\rangle$ finite.
 - We denote the conjunction of equations in E by &E.

We say \mathcal{V} has an **undecidable word problem** if there exists a finite presentation $\langle X, E \rangle$ such that there is no algorithm deciding whether the q.e. (& $E \implies s = t$) holds in \mathcal{V} having $s, t \in T(X)$ as inputs.

Or equivalently, there is a finitely presented algebra $\mathbf{A} \in \mathcal{V}$ generated by X such that the following set is undecidable:

$$\{(s,t)\in T(X)^2: \mathbf{A}\models s=t\}.$$

• undecidable word problem \Rightarrow undecidable q.e. theory.

Counter Machines

A $k\operatorname{\mathsf{-CM}} M = (R_k,Q,P)$ is a finite state automaton that has
A $k\operatorname{\mathsf{-CM}} M = (R_k,Q,P)$ is a finite state automaton that has

▶ a set R_k := {r₁,...,r_k} of k registers (bins) that can each store a non-negative integer (tokens),

- A $k\operatorname{\mathsf{-CM}} M = (R_k,Q,P)$ is a finite state automaton that has
 - ▶ a set R_k := {r₁,...,r_k} of k registers (bins) that can each store a non-negative integer (tokens),
 - a finite set Q of **states** with designated **final state** q_f ,

A k-CM $M = (R_k, Q, P)$ is a finite state automaton that has

- ▶ a set R_k := {r₁,...,r_k} of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of **states** with designated **final state** q_f ,
- and a finite set *P* of **instructions** *p* of the form:
 - $\circ \quad \text{Increment register } r \text{:} \quad q + r \; q'$
 - **Decrement register** r: q r q'
 - $\circ \quad \text{Zero-test register } r : \qquad q \ \mathbf{0} r \ q',$

where $q, q' \in Q$ and $r \in R_k$. E.g,

A k-CM $M = (R_k, Q, P)$ is a finite state automaton that has

- ▶ a set R_k := {r₁,...,r_k} of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of **states** with designated **final state** q_f ,
- and a finite set *P* of **instructions** *p* of the form:
 - $\circ \quad \text{Increment register } r \text{:} \quad q + r \; q'$
 - **Decrement register** r: q r q'
 - $\circ \quad \text{Zero-test register } r : \qquad q \ \mathbf{0} r \ q',$

where $q, q' \in Q$ and $r \in R_k$. E.g,

$$\begin{array}{lll} \text{input configuration} & \text{inst.} & \text{output configuration} \\ \langle q; n_1, ..., n_i, ..., n_k \rangle & \xrightarrow{q + r_i q'} & \langle q'; n_1, ..., n_i + 1, ..., n_k \rangle \\ \langle q; n_1, ..., n_i + 1, ..., n_k \rangle & \xrightarrow{q - r_i q'} & \langle q'; n_1, ..., n_i, ..., n_k \rangle \\ \langle q; n_1, ..., 0, ..., n_k \rangle & \xrightarrow{q 0 r_i q'} & \langle q'; n_1, ..., 0, ..., n_k \rangle \end{array}$$

And-branching k-Counter Machines (k-ACM)

A *k*-ACM $M = (R_k, Q, P)$, as introduced by Lincoln, Mitchell, Scedrov, Shankar (1992), is a type of non-deterministic parallel-computing counter machine that has

- ▶ a set R_k := {r₁,...,r_k} of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of **states** with designated **final state** q_f ,

And-branching k-Counter Machines (k-ACM)

A *k*-ACM $M = (R_k, Q, P)$, as introduced by Lincoln, Mitchell, Scedrov, Shankar (1992), is a type of non-deterministic parallel-computing counter machine that has

- ▶ a set R_k := {r₁,...,r_k} of k registers (bins) that can each store a non-negative integer (tokens),
- a finite set Q of **states** with designated **final state** q_f ,
- and a finite set *P* of **instructions** *p* of the form:

0	Increment:	q	\leq^p	q'r
0	Decrement:	qr	\leq^p	q'
0	Fork:	q	\leq^p	$q' \lor q''$
where $q, q', q'' \in Q$ and $r \in R_k$.				

ACM's continued

A configuration C is a word which consists of a single state and a number of register tokens

$$C = qr_1^{n_1}r_2^{n_2}\cdots r_k^{n_k}.$$

ACM's continued

A configuration C is a word which consists of a single state and a number of register tokens

$$C = qr_1^{n_1}r_2^{n_2}\cdots r_k^{n_k}.$$

Forking instructions allow parallel computation. The "status" u
of a machine at a given moment in a computation is called an
instantaneous description (ID),

$$u = C_1 \lor C_2 \lor \cdots \lor C_n,$$

where $C_1, ..., C_n$ are configurations.

ACM's continued

► A configuration *C* is a word which consists of a single state and a number of register tokens

$$C = qr_1^{n_1}r_2^{n_2}\cdots r_k^{n_k}.$$

Forking instructions allow parallel computation. The "status" u
of a machine at a given moment in a computation is called an
instantaneous description (ID),

$$u = C_1 \lor C_2 \lor \cdots \lor C_n,$$

where $C_1, ..., C_n$ are configurations.

► An instruction p is a function (relation) on ID's that can replace a *single* configuration C by an ID v, i.e.

$$C \lor u \leq^p v \lor u$$

We view computations as order relations on the free commutative semiring $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

We view computations as order relations on the free commutative semiring $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

- (A_M, \lor, \bot) is a commutative monoid with identity $\bot = \bigvee \emptyset$,
- $(A_M, \cdot, 1)$ is a commutative monoid with identity 1, and
- multiplication (\cdot) distributes over "join" (\vee).

We view computations as order relations on the free commutative semiring $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

- (A_M, \lor, \bot) is a commutative monoid with identity $\bot = \bigvee \emptyset$,
- $(A_M, \cdot, 1)$ is a commutative monoid with identity 1, and
- multiplication (·) distributes over "join" (\lor).

Each instruction $p \in P$ defines a relation \leq^p closed under

$$\frac{u \leq^p v}{ux \leq^p vx} \ [\cdot] \qquad \text{ and } \qquad \frac{u \leq^p v}{u \vee w \leq^p v \vee w} \ [\vee],$$

for $u, v, w, x \in A_M$.

We view computations as order relations on the free commutative semiring $\mathbf{A}_M = (A_M, \lor, \cdot, \bot, 1)$ generated by $Q \cup R_k$, where $M = (R_k, Q, P)$ is a k-ACM and

- (A_M, \lor, \bot) is a commutative monoid with identity $\bot = \bigvee \emptyset$,
- $(A_M, \cdot, 1)$ is a commutative monoid with identity 1, and
- multiplication (·) distributes over "join" (\lor).

Each instruction $p \in P$ defines a relation \leq^p closed under

$$\frac{u \leq^{p} v}{ux \leq^{p} vx} [\cdot] \qquad \text{and} \qquad \frac{u \leq^{p} v}{u \lor w \leq^{p} v \lor w} [\lor],$$

for $u, v, w, x \in A_M$. We define the **computation relation** \leq_M to be the smallest (\cdot, \vee) -compatible preorder containing $\bigcup_{p \in P} \leq^p$.

Define $\operatorname{Fin}(M) = \{\bigvee_{i=1}^{n} q_f : n \in \mathbb{Z}^+\}$ to be the set of Final ID's.

• $C_1 \lor \cdots \lor C_n \in \operatorname{Acc}(M) \iff C_1, ..., C_n \in \operatorname{Acc}(M).$

$$\blacktriangleright C_1 \lor \cdots \lor C_n \in \operatorname{Acc}(M) \iff C_1, ..., C_n \in \operatorname{Acc}(M).$$

•
$$u \in \operatorname{Acc}(M) \implies \exists p_1, ..., p_n \in P \text{ and } \exists u_0, ..., u_n \in \operatorname{ID}(M),$$

$$u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n \in \operatorname{Fin}(M).$$

►
$$C_1 \lor \dots \lor C_n \in \operatorname{Acc}(M) \iff C_1, \dots, C_n \in \operatorname{Acc}(M).$$

► $u \in \operatorname{Acc}(M) \implies \exists p_1, \dots, p_n \in P \text{ and } \exists u_0, \dots, u_n \in \operatorname{ID}(M),$
 $u = u_0 \leq^{p_1} u_1 \leq^{p_2} \dots \leq^{p_n} u_n \in \operatorname{Fin}(M).$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions $q_0 r \leq^{p_1} q_1; \quad q_1 r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f \lor q_f.$

►
$$C_1 \lor \cdots \lor C_n \in \operatorname{Acc}(M) \iff C_1, ..., C_n \in \operatorname{Acc}(M).$$

► $u \in \operatorname{Acc}(M) \implies \exists p_1, ..., p_n \in P \text{ and } \exists u_0, ..., u_n \in \operatorname{ID}(M),$
 $u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n \in \operatorname{Fin}(M).$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions $q_0 r \leq^{p_1} q_1; \quad q_1 r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f \lor q_f.$

• Note that $q_0 r^n \in Acc(M)$ iff n is even.

►
$$C_1 \lor \dots \lor C_n \in \operatorname{Acc}(M) \iff C_1, \dots, C_n \in \operatorname{Acc}(M).$$

► $u \in \operatorname{Acc}(M) \implies \exists p_1, \dots, p_n \in P \text{ and } \exists u_0, \dots, u_n \in \operatorname{ID}(M),$
 $u = u_0 \leq^{p_1} u_1 \leq^{p_2} \dots \leq^{p_n} u_n \in \operatorname{Fin}(M).$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions $q_0 r \leq^{p_1} q_1; \quad q_1 r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f \lor q_f.$

• Note that $q_0 r^n \in Acc(M)$ iff n is even.

$$q_0 r^4 \leq^{p_1} q_1 r^3 \leq^{p_2} q_0 r^2 \leq^{p_1} q_1 r \leq^{p_2} q_0 \leq^{p_3} q_f \lor q_f \in \operatorname{Acc}(M)$$

►
$$C_1 \lor \cdots \lor C_n \in \operatorname{Acc}(M) \iff C_1, ..., C_n \in \operatorname{Acc}(M).$$

► $u \in \operatorname{Acc}(M) \implies \exists p_1, ..., p_n \in P \text{ and } \exists u_0, ..., u_n \in \operatorname{ID}(M),$
 $u = u_0 \leq^{p_1} u_1 \leq^{p_2} \cdots \leq^{p_n} u_n \in \operatorname{Fin}(M).$

Example Machine

Let $M = M_{\text{even}} := (\{r\}, \{q_0, q_1, q_f\}, \{p_1, p_2, p_3\})$, with instructions $q_0r \leq^{p_1} q_1; \quad q_1r \leq^{p_2} q_0; \quad q_0 \leq^{p_3} q_f \lor q_f.$

• Note that $q_0 r^n \in Acc(M)$ iff n is even.

$$q_0 r^4 \leq^{p_1} q_1 r^3 \leq^{p_2} q_0 r^2 \leq^{p_1} q_1 r \leq^{p_2} q_0 \leq^{p_3} q_f \lor q_f \in \operatorname{Acc}(M)$$
$$q_0 r^3 \leq^{p_1} q_1 r^2 \leq^{p_2} q_0 r \leq^{p_3} q_f r \lor q_f r \notin \operatorname{Acc}(M)$$

Theorem [LMSS 1992]

There exists a 2-ACM M such that membership of the set $\{u\in \mathrm{ID}(M): u\in \mathrm{Acc}(M)\}$ is undecidable.

Theorem [LMSS 1992]

There exists a 2-ACM M such that membership of the set $\{u\in \mathrm{ID}(M): u\in \mathrm{Acc}(M)\}$ is undecidable.

Let $M = (R_k, Q, P)$ be a k-ACM and $u \in ID(M)$,

• We can define a quasi-equation $\operatorname{acc}_M(u)$ in the signature $\langle \lor, \cdot, 1 \rangle$ via

$$\&P \implies u \le q_f.$$

Let $M = (R_k, Q, P)$ be a k-ACM and $W := (Q \cup R_k)^*$ be the free commutative monoid generated by $Q \cup R_k$.

Let $M = (R_k, Q, P)$ be a k-ACM and $W := (Q \cup R_k)^*$ be the free commutative monoid generated by $Q \cup R_k$.

The frame $\mathbf{W}_{\mathbf{M}}$

Inspired by Horčík (2015), we let W' := W and define the relation $N_M \subseteq W \times W'$ via

 $x N_M z$ iff $xz \in Acc(M)$,

for all $x, z \in W$.

Let $M = (R_k, Q, P)$ be a k-ACM and $W := (Q \cup R_k)^*$ be the free commutative monoid generated by $Q \cup R_k$.

The frame $\mathbf{W}_{\mathbf{M}}$

Inspired by Horčík (2015), we let W' := W and define the relation $N_M \subseteq W \times W'$ via

 $x N_M z$ iff $xz \in Acc(M)$,

for all $x, z \in W$. Observe that, for any $x, y, z \in W$,

$$xy N_M z \iff xyz \in Acc(M) \iff x N_M yz.$$

Since W is commutive it follows that N_M is nuclear.

Let $M = (R_k, Q, P)$ be a k-ACM and $W := (Q \cup R_k)^*$ be the free commutative monoid generated by $Q \cup R_k$.

The frame $\mathbf{W}_{\mathbf{M}}$

Inspired by Horčík (2015), we let W':=W and define the relation $N_M\subseteq W\times W'$ via

 $x N_M z$ iff $xz \in Acc(M)$,

for all $x, z \in W$. Observe that, for any $x, y, z \in W$,

$$xy N_M z \iff xyz \in Acc(M) \iff x N_M yz.$$

Since W is commutive it follows that N_M is nuclear.

Lemma

 $\mathbf{W}_M := (W, W', N_M)$ is a residuated frame, $\mathbf{W}_M^+ \in C\mathcal{RL}$, and there exists a valuation $\nu : \mathrm{Tm} \to W_M^+$ such that $\mathbf{W}_M^+, \nu \models \& P$.

Gavin St. John

Let M be a k-ACM and $\mathcal{V} \subseteq (\mathcal{C})\mathcal{RL}$ a variety.

Theorem

If $\mathbf{W}_M^+ \in \mathcal{V}$ then for all $u \in \mathrm{ID}(M)$,

 $u \in \operatorname{Acc}(M)$ if and only if $\mathcal{V} \models \operatorname{acc}_M(u)$.

Let *M* be a *k*-ACM and $\mathcal{V} \subseteq (\mathcal{C})\mathcal{RL}$ a variety.

Theorem

If $\mathbf{W}_M^+ \in \mathcal{V}$ then for all $u \in \mathrm{ID}(M)$,

$$u \in \operatorname{Acc}(M)$$
 if and only if $\mathcal{V} \models \operatorname{acc}_M(u)$.

Corollary

If $\mathbf{W}_{M}^{+} \in \mathcal{V}$ then the computational complexity for the word problem of \mathcal{V} is at least as complex as the membership of Acc(M).

Let M be a k-ACM and $\mathcal{V} \subseteq (\mathcal{C})\mathcal{RL}$ a variety.

Theorem

If $\mathbf{W}_M^+ \in \mathcal{V}$ then for all $u \in \mathrm{ID}(M)$,

 $u \in \operatorname{Acc}(M)$ if and only if $\mathcal{V} \models \operatorname{acc}_M(u)$.

Corollary

If $\mathbf{W}_{M}^{+} \in \mathcal{V}$ then the computational complexity for the word problem of \mathcal{V} is at least as complex as the membership of Acc(M).

Corollary

Suppose membership of Acc(M) is undecidable. If $\mathbf{W}_M^+ \in \mathcal{V}$ then \mathcal{V} has an undecidable word problem.

Let *M* be a *k*-ACM and $\mathcal{V} \subseteq (\mathcal{C})\mathcal{RL}$ a variety.

Theorem

If $\mathbf{W}_M^+ \in \mathcal{V}$ then for all $u \in \mathrm{ID}(M)$,

 $u \in \operatorname{Acc}(M)$ if and only if $\mathcal{V} \models \operatorname{acc}_M(u)$.

Corollary

If $\mathbf{W}_{M}^{+} \in \mathcal{V}$ then the computational complexity for the word problem of \mathcal{V} is at least as complex as the membership of Acc(M).

Corollary

Suppose membership of Acc(M) is undecidable. If $\mathbf{W}_{M}^{+} \in \mathcal{V}$ then \mathcal{V} has an undecidable word problem. In particular, $(\mathcal{C})\mathcal{RL}$ has an undecidable word problem since $\mathbf{W}_{\tilde{M}}^{+} \in \mathcal{CRL}$, where \tilde{M} is the machine from LMSS (1992).

Gavin St. John

Let $M = (R_k, Q, P)$ be a k-ACM. Given a simple rule, e.g. (d) : $x \le x^2 \lor x^4$, we add "ambient" instructions of the form

$$t \leq^{\mathsf{d}} t^2 \vee t^4 \left(\prod_{i=1}^n t_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n t_i^{d_j(i)} \right),$$

for each $t \in (Q \cup R_k)^*$ $(t_1, ..., t_n \in (Q \cup R_k)^*)$.

Let $M = (R_k, Q, P)$ be a k-ACM. Given a simple rule, e.g. (d) : $x \le x^2 \lor x^4$, we add "ambient" instructions of the form

$$t \leq^{\mathsf{d}} t^2 \vee t^4 \left(\prod_{i=1}^n t_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n t_i^{d_j(i)} \right),$$

for each $t \in (Q \cup R_k)^*$ $(t_1, ..., t_n \in (Q \cup R_k)^*)$.

As with the instructions in P, we close ≤^d under the inference rules [·] and [∨].

Let $M = (R_k, Q, P)$ be a k-ACM. Given a simple rule, e.g. (d) : $x \le x^2 \lor x^4$, we add "ambient" instructions of the form

$$t \leq^{\mathsf{d}} t^2 \vee t^4 \left(\prod_{i=1}^n t_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n t_i^{d_j(i)} \right),$$

for each $t \in (Q \cup R_k)^*$ $(t_1, ..., t_n \in (Q \cup R_k)^*)$.

- As with the instructions in P, we close ≤^d under the inference rules [·] and [∨].
- ▶ Similarly, we define the relation \leq_{dM} to be the smallest (\cdot, \lor) -compatible preorder generated by $\leq^{d} \cup \leq_{M}$.

Let $M = (R_k, Q, P)$ be a k-ACM. Given a simple rule, e.g. (d) : $x \le x^2 \lor x^4$, we add "ambient" instructions of the form

$$t \leq^{\mathsf{d}} t^2 \vee t^4 \left(\prod_{i=1}^n t_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n t_i^{d_j(i)} \right),$$

for each $t \in (Q \cup R_k)^*$ $(t_1, ..., t_n \in (Q \cup R_k)^*)$.

- As with the instructions in P, we close ≤^d under the inference rules [·] and [∨].
- ► Similarly, we define the relation \leq_{dM} to be the smallest (\cdot, \lor) -compatible preorder generated by $\leq^{d} \cup \leq_{M}$.
- We denote this new machine by dM.

Let $M = (R_k, Q, P)$ be a k-ACM. Given a simple rule, e.g. (d) : $x \le x^2 \lor x^4$, we add "ambient" instructions of the form

$$t \leq^{\mathsf{d}} t^2 \vee t^4 \left(\prod_{i=1}^n t_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n t_i^{d_j(i)} \right),$$

for each $t \in (Q \cup R_k)^*$ $(t_1, ..., t_n \in (Q \cup R_k)^*)$.

- As with the instructions in P, we close ≤^d under the inference rules [·] and [∨].
- ► Similarly, we define the relation \leq_{dM} to be the smallest (\cdot, \lor) -compatible preorder generated by $\leq^{d} \cup \leq_{M}$.
- We denote this new machine by dM.

Lemma

Let $M = (R_k, Q, P)$ be a *k*-ACM and (d) a simple rule. Then $\mathbf{W}_{dM} \models [d]$, and therefore $\mathbf{W}_{dM}^+ \in C\mathcal{RL} + (d)$.
Admissibility of simple rules for a machine

Definition

Let M be a $k\text{-}\mathsf{ACM}$ and (d) be a d-rule. We say (d) is admissible in M if

 $\operatorname{Acc}(M) = \operatorname{Acc}(\mathsf{d}M),$

Admissibility of simple rules for a machine

Definition

Let M be a $k\text{-}\mathsf{ACM}$ and (d) be a d-rule. We say (d) is admissible in M if

 $\operatorname{Acc}(M) = \operatorname{Acc}(\mathsf{d}M),$

i.e., $\mathbf{W}_M^+ \in \mathcal{CRL} + (\mathsf{d}).$

Admissibility of simple rules for a machine

Definition

Let M be a $k\mbox{-ACM}$ and (d) be a d-rule. We say (d) is admissible in M if

 $\operatorname{Acc}(M) = \operatorname{Acc}(\mathsf{d}M),$

i.e., $\mathbf{W}_M^+ \in \mathcal{CRL} + (\mathsf{d}).$

However, we will rephrase admissibility as the intermediate notions **register** and **state admissibility**.

We define $\leq^{\overline{\mathbf{d}}}$ to be the "ambient" instruction, for each $x \in R_k^*$ $(x_1, ..., x_n \in R_k^*)$,

$$x \leq^{\bar{\mathsf{d}}} x^2 \vee x^4 \left(\prod_{i=1}^n x_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n x_i^{d_j(i)} \right),$$

and define $\leq_{\bar{d}M}$ as usual.

We define $\leq^{\overline{\mathbf{d}}}$ to be the "ambient" instruction, for each $x \in R_k^*$ $(x_1, ..., x_n \in R_k^*)$,

$$x \leq^{\overline{\mathsf{d}}} x^2 \vee x^4 \left(\prod_{i=1}^n x_i \leq^{\overline{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n x_i^{d_j(i)} \right),$$

and define $\leq_{\bar{\mathbf{d}}M}$ as usual. In this way, we see

$$\operatorname{Acc}(M) \subseteq \operatorname{Acc}(\overline{\mathsf{d}}M) \subseteq \operatorname{Acc}(\mathsf{d}M).$$

We define $\leq^{\overline{\mathbf{d}}}$ to be the "ambient" instruction, for each $x \in R_k^*$ $(x_1, ..., x_n \in R_k^*)$,

$$x \leq^{\overline{\mathsf{d}}} x^2 \vee x^4 \left(\prod_{i=1}^n x_i \leq^{\overline{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n x_i^{d_j(i)} \right),$$

and define $\leq_{\bar{\mathbf{d}}M}$ as usual. In this way, we see

$$\operatorname{Acc}(M) \subseteq \operatorname{Acc}(\overline{\mathsf{d}}M) \subseteq \operatorname{Acc}(\mathsf{d}M).$$

We say (d) is **register (state) admissible in** M if $Acc(M) = Acc(\overline{d}M)$ ($Acc(\overline{d}M) = Acc(dM)$).

We define $\leq^{\overline{\mathbf{d}}}$ to be the "ambient" instruction, for each $x \in R_k^*$ $(x_1, ..., x_n \in R_k^*)$,

$$x \leq^{\bar{\mathsf{d}}} x^2 \vee x^4 \ \left(\prod_{i=1}^n x_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n x_i^{d_j(i)} \right),$$

and define $\leq_{\bar{\mathsf{d}}M}$ as usual. In this way, we see

$$\operatorname{Acc}(M) \subseteq \operatorname{Acc}(\bar{\mathsf{d}}M) \subseteq \operatorname{Acc}(\mathsf{d}M).$$

We say (d) is **register (state) admissible in** M if Acc $(M) = Acc(\bar{d}M)$ (Acc $(\bar{d}M) = Acc(dM)$). Therefore, (d) is admissible in M iff it is both state and register admissible in M.

We define \leq^{d} to be the "ambient" instruction, for each $x \in R_{k}^{*}$ $(x_{1}, ..., x_{n} \in R_{k}^{*})$,

$$x \leq^{\bar{\mathsf{d}}} x^2 \vee x^4 \ \left(\prod_{i=1}^n x_i \leq^{\bar{\mathsf{d}}} \bigvee_{j=1}^m \prod_{i=1}^n x_i^{d_j(i)} \right),$$

and define $\leq_{\bar{\mathbf{d}}M}$ as usual. In this way, we see

$$\operatorname{Acc}(M) \subseteq \operatorname{Acc}(\bar{\mathsf{d}}M) \subseteq \operatorname{Acc}(\mathsf{d}M).$$

We say (d) is **register (state) admissible in** M if Acc $(M) = Acc(\bar{d}M)$ (Acc $(\bar{d}M) = Acc(dM)$). Therefore, (d) is admissible in M iff it is both state and register admissible in M.

Theorem

Let M be a k-ACM and (d) a d-rule. Then (d) is *state*-admissible in M iff there is no substitution $\sigma : \operatorname{Var} \to \operatorname{Var}^*$ such that $\sigma[d] \equiv x^k \leq x$ or $\sigma[d] \equiv x^k \leq 1$.

► For rules that don't entail k-mingle (x^k ≤ x), it suffices to show only register-admissibility for a machine.

- ► For rules that don't entail k-mingle (x^k ≤ x), it suffices to show only register-admissibility for a machine.
- ► However, for some ACM's M, it's possible that $C \in Acc(\overline{d}M)$ but $C \notin Acc(M)$.

- ► For rules that don't entail k-mingle (x^k ≤ x), it suffices to show only register-admissibility for a machine.
- ► However, for some ACM's M, it's possible that $C \in Acc(\overline{d}M)$ but $C \notin Acc(M)$.

Example

Consider $M = M_{\text{even}}$ and (d) given by $x \leq x^2 \vee x^4$.

- ► For rules that don't entail k-mingle (x^k ≤ x), it suffices to show only register-admissibility for a machine.
- ► However, for some ACM's M, it's possible that $C \in Acc(\overline{d}M)$ but $C \notin Acc(M)$.

Example

Consider $M = M_{\text{even}}$ and (d) given by $x \leq x^2 \vee x^4$.

• $q_0r^3 \not\in \operatorname{Acc}(M)$ since 3 is odd.

- ► For rules that don't entail k-mingle (x^k ≤ x), it suffices to show only register-admissibility for a machine.
- ► However, for some ACM's M, it's possible that $C \in Acc(\overline{d}M)$ but $C \notin Acc(M)$.

Example

Consider $M = M_{\text{even}}$ and (d) given by $x \leq x^2 \vee x^4$.

• $q_0 r^3 \notin \operatorname{Acc}(M)$ since 3 is odd.

• However,
$$q_0 r^3 \in Acc(dM)$$
, witnessed by

$$\begin{split} q_0r^3 &= q_0r^2r \leq^\mathsf{d} q_0r^2r^2 \vee q_0r^2r^4 = q_0r^4 \vee q_0r^6 \in \operatorname{Acc}(M) \\ \text{since } q_0r^4 \in \operatorname{Acc}(M) \text{ and } q_0r^6 \in \operatorname{Acc}(M). \end{split}$$

Given an ACM M and a d-rule (d), is it possible to construct a new ACM M^\prime such that

 $(1) \ C \in \operatorname{Acc}(M) \iff \theta(C) \in \operatorname{Acc}(M')$

(where $\theta : ID(M) \to ID(M')$ is some computable function), and

 $(2)~(\mathsf{d})$ is register-admissible in M'?

And if so, under what conditions?

Let $M=(R_2,Q,P)$ be a 2-ACM and let K>1 be given. We define the 3-ACM $M_K=(R_3,Q_K,P_K)$ such that

Let $M=(R_2,Q,P)$ be a 2-ACM and let K>1 be given. We define the 3-ACM $M_K=(R_3,Q_K,P_K)$ such that

► $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F \lor q_F) \in P_K$,

Let $M=(R_2,Q,P)$ be a 2-ACM and let K>1 be given. We define the 3-ACM $M_K=(R_3,Q_K,P_K)$ such that

- ► $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F \lor q_F) \in P_K$,
- each forking instruction in P is contained in P_K ,

Let $M=(R_2,Q,P)$ be a 2-ACM and let K>1 be given. We define the 3-ACM $M_K=(R_3,Q_K,P_K)$ such that

- $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F \lor q_F) \in P_K$,
- each forking instruction in P is contained in P_K ,
- each increment and decrement instruction of P is replaced by multiply and divide by K programs, i.e.

Let $M=(R_2,Q,P)$ be a 2-ACM and let K>1 be given. We define the 3-ACM $M_K=(R_3,Q_K,P_K)$ such that

- ▶ $Q \subset Q_K$ with q_F the final state of M_K and instruction $(q_f r_1 r_2 \leq^F q_F \lor q_F) \in P_K$,
- each forking instruction in P is contained in P_K ,
- each increment and decrement instruction of P is replaced by multiply and divide by K programs, i.e.

Fact

For each $q \in Q$,

$$qr_1^{n_1}r_2^{n_2} \in \operatorname{Acc}(M) \iff qr_1^{K^{n_1}}r_2^{K^{n_2}} \in \operatorname{Acc}(M_K).$$

Observation

Consider a configuration where the contents of some register r is n = s + t, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$qr^n = qr^sr^t \leq^\mathsf{d} qr^s(r^{2t} \vee r^{4t}) = qr^{s+2t} \vee qr^{s+4t}$$

Observation

Consider a configuration where the contents of some register r is n = s + t, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$qr^n = qr^sr^t \leq^\mathsf{d} qr^s(r^{2t} \vee r^{4t}) = qr^{s+2t} \vee qr^{s+4t}$$

Fact

For (d) : $x \le x^2 \lor x^4$, if K > 3, it is **impossible** for s + 2t and s + 4t to **both be powers of** K.

Observation

Consider a configuration where the contents of some register r is n = s + t, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$qr^n = qr^sr^t \leq^\mathsf{d} qr^s(r^{2t} \vee r^{4t}) = qr^{s+2t} \vee qr^{s+4t}$$

Fact

For (d) : $x \le x^2 \lor x^4$, if K > 3, it is **impossible** for s + 2t and s + 4t to **both be powers of** K.

► Consequently, $qr^n \in Acc(\bar{d}M_K)$ iff $qr^n \in Acc(M_K)$, i.e $Acc(\bar{d}M_K) = Acc(M_K)$, so (d) is register-admissible in M_K .

Observation

Consider a configuration where the contents of some register r is n = s + t, whereafter \leq^{d} is applied to t-many tokens, i.e.,

$$qr^n = qr^sr^t \leq^\mathsf{d} qr^s(r^{2t} \vee r^{4t}) = qr^{s+2t} \vee qr^{s+4t}$$

Fact

For (d) : $x \le x^2 \lor x^4$, if K > 3, it is **impossible** for s + 2t and s + 4t to **both be powers of** K.

- ► Consequently, $qr^n \in Acc(\bar{d}M_K)$ iff $qr^n \in Acc(M_K)$, i.e $Acc(\bar{d}M_K) = Acc(M_K)$, so (d) is register-admissible in M_K .
- (d) does not entail k-mingle, therefore (d) is M_K admissible.

Undecidable quasi-equational theory for 1-variable d-rules

Let \mathfrak{D}_1 be the set of 1-variable d-rules defined via $(\mathsf{d}) \in \mathfrak{D}_1$ iff

 $\begin{aligned} (\mathsf{d}): x^n \leq \bigvee_{m \in X} x^m \text{ such that } n \in X \text{ or } |X \setminus \{0\}| \geq 2 \text{ for some} \\ \text{finite } X \subseteq \mathbb{N}. \end{aligned}$

Theorem

Let $(d) \in \mathfrak{D}_1$. Then there exists a K > 1 such that (d) is admissible in M_K for any 2-ACM M.

Undecidable quasi-equational theory for 1-variable d-rules

Let \mathfrak{D}_1 be the set of 1-variable d-rules defined via $(\mathsf{d}) \in \mathfrak{D}_1$ iff

 $\begin{aligned} (\mathsf{d}): x^n \leq \bigvee_{m \in X} x^m \text{ such that } n \in X \text{ or } |X \setminus \{0\}| \geq 2 \text{ for some} \\ \text{finite } X \subseteq \mathbb{N}. \end{aligned}$

Theorem

Let $(d) \in \mathfrak{D}_1$. Then there exists a K > 1 such that (d) is admissible in M_K for any 2-ACM M.

Theorem

Let $\Gamma \subset \mathfrak{D}_1$ be finite. Then then $\mathcal{CRL} + \Gamma$ has an undecidable quasi-equational theory.

Undecidable quasi-equational theory for 1-variable d-rules

Let \mathfrak{D}_1 be the set of 1-variable d-rules defined via $(\mathsf{d}) \in \mathfrak{D}_1$ iff

 $\begin{aligned} (\mathsf{d}): x^n \leq \bigvee_{m \in X} x^m \text{ such that } n \in X \text{ or } |X \setminus \{0\}| \geq 2 \text{ for some} \\ \text{finite } X \subseteq \mathbb{N}. \end{aligned}$

Theorem

Let $(d) \in \mathfrak{D}_1$. Then there exists a K > 1 such that (d) is admissible in M_K for any 2-ACM M.

Theorem

Let $\Gamma \subset \mathfrak{D}_1$ be finite. Then then $\mathcal{CRL} + \Gamma$ has an undecidable quasi-equational theory.

- ▶ $CRL + (x^n \le x^m)$ has the FEP, and hence is decidable for any $n \ne m$.
- ► However, the decidability of $CRL + (x^n \le x^m \lor 1)$ remains open, for any $n \ne m > 0$.

Gavin St. John

Let (d) be an *n*-variable d-rule. We define the set \mathfrak{D} via (d) $\in \mathfrak{D}$ if there exists K > 1 such that:

For all $s, s' \in \mathbb{N}^n$, if there exists $\alpha, \alpha' \in \mathbb{N}$ such that $d \cdot s + \alpha$ and $d \cdot s' + \alpha'$ are powers of K for each $d \in d$, then there exists $\overline{d} \in d$ such that $\overline{d} \cdot s = l_n \cdot s$ and $\overline{d} \cdot s' = l_n \cdot s'$,

where $l_n(i) = 1$ for each i = 1, ..., n.

Let (d) be an *n*-variable d-rule. We define the set \mathfrak{D} via (d) $\in \mathfrak{D}$ if there exists K > 1 such that:

For all $s, s' \in \mathbb{N}^n$, if there exists $\alpha, \alpha' \in \mathbb{N}$ such that $d \cdot s + \alpha$ and $d \cdot s' + \alpha'$ are powers of K for each $d \in d$, then there exists $\overline{d} \in d$ such that $\overline{d} \cdot s = l_n \cdot s$ and $\overline{d} \cdot s' = l_n \cdot s'$,

where $l_n(i) = 1$ for each i = 1, ..., n.

Theorem

For every $(d) \in \mathfrak{D}$ there exists a K > 1 such that (d) is admissible in M_K , for any 2-ACM M. Consequently, $(\mathcal{C})\mathcal{RL} + (d)$ has an undecidable quasi-equational theory. Let (d) be an *n*-variable d-rule. We define the set \mathfrak{D} via (d) $\in \mathfrak{D}$ if there exists K > 1 such that:

For all $s, s' \in \mathbb{N}^n$, if there exists $\alpha, \alpha' \in \mathbb{N}$ such that $d \cdot s + \alpha$ and $d \cdot s' + \alpha'$ are powers of K for each $d \in d$, then there exists $\overline{d} \in d$ such that $\overline{d} \cdot s = l_n \cdot s$ and $\overline{d} \cdot s' = l_n \cdot s'$,

where $l_n(i) = 1$ for each i = 1, ..., n.

Theorem*

For every $\Gamma \subset \mathfrak{D}$ finite there exists a K > 1 such that (d) is admissible in M_K , for all (d) $\in \Gamma$ and any 2-ACM M. Consequently, $(\mathcal{C})\mathcal{RL} + \Gamma$ has an undecidable quasi-equational theory.

Known results for Equational Theory

 $[\mathbf{k}_n^m]$ represents the knotted rule $x^n \leq x^m$

Undecidable Eq. Theory	Decidable Eq. Theory
	\mathcal{RL}
	CRL
$\mathcal{RL} + [\mathbf{k}_n^m], 1 \le n < m$	
	$\mathcal{CRL} + [k_n^m]$
CRL + (?)	

Let $M = (R_k, Q, P)$ be a k-ACM. We define the equation $\epsilon_M^n(u)$ in the signature $\langle \rightarrow, \lor, \cdot, 1 \rangle$ via

$$\epsilon_M^n(u) := u \cdot (1 \wedge \bigwedge_{p \in P} p^{\rightarrow})^n \le q_f,$$

where $p^{\rightarrow} := C \rightarrow v$, where p is the instruction $C \leq v$, and $n \geq 1$.

Let $M = (R_k, Q, P)$ be a k-ACM. We define the equation $\epsilon_M^n(u)$ in the signature $\langle \rightarrow, \lor, \cdot, 1 \rangle$ via

$$\epsilon_M^n(u) := u \cdot (1 \wedge \bigwedge_{p \in P} p^{\rightarrow})^n \le q_f,$$

where $p^{\rightarrow} := C \rightarrow v$, where p is the instruction $C \leq v$, and $n \geq 1$.

Theorem

Let $\mathcal{V} \subseteq C\mathcal{RL}$ be a variety and M a 2-ACM such that membership of Acc(M) is undecidable.

Let $M = (R_k, Q, P)$ be a k-ACM. We define the equation $\epsilon_M^n(u)$ in the signature $\langle \rightarrow, \lor, \cdot, 1 \rangle$ via

$$\epsilon_M^n(u) := u \cdot (1 \wedge \bigwedge_{p \in P} p^{\rightarrow})^n \le q_f,$$

where $p^{\rightarrow} := C \rightarrow v$, where p is the instruction $C \leq v$, and $n \geq 1$.

Theorem

Let $\mathcal{V} \subseteq C\mathcal{RL}$ be a variety and M a 2-ACM such that membership of Acc(M) is undecidable. Suppose M is \mathcal{V} -admissible and

$$\mathcal{V} \models x^n \le \bigvee_{c \in X} x^{n+c}$$

for some finite $X \subset \mathbb{Z}^+$.

Let $M = (R_k, Q, P)$ be a k-ACM. We define the equation $\epsilon_M^n(u)$ in the signature $\langle \rightarrow, \lor, \cdot, 1 \rangle$ via

$$\epsilon_M^n(u) := u \cdot (1 \wedge \bigwedge_{p \in P} p^{\rightarrow})^n \le q_f,$$

where $p^{\rightarrow} := C \rightarrow v$, where p is the instruction $C \leq v$, and $n \geq 1$.

Theorem

Let $\mathcal{V} \subseteq C\mathcal{RL}$ be a variety and M a 2-ACM such that membership of Acc(M) is undecidable. Suppose M is \mathcal{V} -admissible and

$$\mathcal{V} \models x^n \le \bigvee_{c \in X} x^{n+c}$$

for some finite $X \subset \mathbb{Z}^+$. Then for all $u \in ID(M)$,

$$\mathcal{V} \models \epsilon_M^n(u) \iff \mathcal{V} \models \operatorname{acc}_M(u) \iff u \in \operatorname{Acc}(M)$$

and hence \mathcal{V} has an undecidable equational theory.

Gavin St. John

Revisiting the definition of $\mathfrak D$

 Membership of (d) ∈ D is foremost dependent upon whether there exists *very special* non-negative integral solutions to a system of equations determined by certain partitions of d = {d₁,...,d_m} ⊂ Nⁿ viewed as affine subspaces Rⁿ.

Revisiting the definition of $\mathfrak D$

- Membership of (d) ∈ D is foremost dependent upon whether there exists very special non-negative integral solutions to a system of equations determined by certain partitions of d = {d₁,...,d_m} ⊂ Nⁿ viewed as affine subspaces Rⁿ.
- The condition of membership of $(d) \in \mathfrak{D}$ is equivalent to: For all $s \in \mathbb{N}^n$, if there exists $\alpha \in \mathbb{N}$ such that $d \cdot s + \alpha$ is a power of K for each $d \in d$, then there exists $\overline{d} \in d$ such that $\overline{d} \cdot s = l_n \cdot s$,
Revisiting the definition of $\mathfrak D$

- Membership of (d) ∈ D is foremost dependent upon whether there exists *very special* non-negative integral solutions to a system of equations determined by certain partitions of d = {d₁,...,d_m} ⊂ Nⁿ viewed as affine subspaces Rⁿ.
- The condition of membership of $(d) \in \mathfrak{D}$ is equivalent to: For all $s \in \mathbb{N}^n$, if there exists $\alpha \in \mathbb{N}$ such that $d \cdot s + \alpha$ is a power of K for each $d \in d$, then there exists $\overline{d} \in d$ such that $\overline{d} \cdot s = l_n \cdot s$,

which, in turn, is equivalent to the non-existence of a substitution σ : Var \rightarrow Var^{*} such that $\sigma(d)$ is equivalent to a *non-redundant* spine, i.e.,

$$\begin{split} &\prod_{i=1}^n x_i^{\lambda(i)} \leq (1 \vee) \; x_1^{\rho_1(1)} \vee x_1^{\rho_2(1)} x_2^{\rho_2(2)} \vee \cdots \vee \prod_{i=1}^n x_i^{\rho_n(i)} \\ & \text{with } \lambda \neq \rho_n. \end{split}$$

Fact

Suppose (d) implies some non-redundant spine, i.e.,

$$\prod_{i=1}^{n} x_{i}^{\lambda(i)} \leq (1 \lor) x_{1}^{\rho_{1}(1)} \lor x_{1}^{\rho_{2}(1)} x_{2}^{\rho_{2}(2)} \lor \cdots \lor \prod_{i=1}^{n} x_{i}^{\rho_{n}(i)}$$

with $\lambda \neq \rho_n$. Then for every injective function $\phi : \mathbb{N} \to \mathbb{N}$, there exists $s \in \mathbb{N}^n$ and $\alpha \in \mathbb{N}$ such that $d \cdot s + \alpha \in \phi[N]$ but $d \cdot s \neq l_n \cdot s$, for all $d \in d$.

Fact

Suppose (d) implies some non-redundant spine, i.e.,

$$\prod_{i=1}^{n} x_{i}^{\lambda(i)} \leq (1 \lor) x_{1}^{\rho_{1}(1)} \lor x_{1}^{\rho_{2}(1)} x_{2}^{\rho_{2}(2)} \lor \dots \lor \prod_{i=1}^{n} x_{i}^{\rho_{n}(i)}$$

with $\lambda \neq \rho_n$. Then for every injective function $\phi : \mathbb{N} \to \mathbb{N}$, there exists $s \in \mathbb{N}^n$ and $\alpha \in \mathbb{N}$ such that $d \cdot s + \alpha \in \phi[N]$ but $d \cdot s \neq l_n \cdot s$, for all $d \in d$. I.e., our method *cannot* be extended for spines.

Fact

Suppose (d) implies some non-redundant spine, i.e.,

$$\prod_{i=1}^{n} x_{i}^{\lambda(i)} \leq (1 \lor) x_{1}^{\rho_{1}(1)} \lor x_{1}^{\rho_{2}(1)} x_{2}^{\rho_{2}(2)} \lor \cdots \lor \prod_{i=1}^{n} x_{i}^{\rho_{n}(i)}$$

with $\lambda \neq \rho_n$. Then for every injective function $\phi : \mathbb{N} \to \mathbb{N}$, there exists $s \in \mathbb{N}^n$ and $\alpha \in \mathbb{N}$ such that $d \cdot s + \alpha \in \phi[N]$ but $d \cdot s \neq l_n \cdot s$, for all $d \in d$. I.e., our method *cannot* be extended for spines.

Theorem

For any $n \in \mathbb{N}$, $(d) \in \mathfrak{D}$ iff there is no substitution $\sigma : \operatorname{Var} \to \operatorname{Var}^*$ such that $\sigma(d)$ is equivalent to a *non-redundant spine*.

Fact

Suppose (d) implies some non-redundant spine, i.e.,

$$\prod_{i=1}^{n} x_{i}^{\lambda(i)} \leq (1 \lor) x_{1}^{\rho_{1}(1)} \lor x_{1}^{\rho_{2}(1)} x_{2}^{\rho_{2}(2)} \lor \cdots \lor \prod_{i=1}^{n} x_{i}^{\rho_{n}(i)}$$

with $\lambda \neq \rho_n$. Then for every injective function $\phi : \mathbb{N} \to \mathbb{N}$, there exists $s \in \mathbb{N}^n$ and $\alpha \in \mathbb{N}$ such that $d \cdot s + \alpha \in \phi[N]$ but $d \cdot s \neq l_n \cdot s$, for all $d \in d$. I.e., our method *cannot* be extended for spines.

Theorem

For any $n \in \mathbb{N}$, $(d) \in \mathfrak{D}$ iff there is no substitution $\sigma : \operatorname{Var} \to \operatorname{Var}^*$ such that $\sigma(d)$ is equivalent to a *non-redundant spine*.

Open

What is the decidability of \mathcal{CRL} with non-redundant spines? E.g., $x\leq 1 \lor x^2.$

Gavin St. John

Thank You!

References

- C.J. van Alten, *The finite model property for knotted extensions of propositional linear logic.* J. Symbolic Logic 70 (2005), no. 1, 84-98.
- K. Chvalovský, R. Horčík, *Full Lambek calculus with contraction is undecidable.* J. Symbolic Logic 81 (2016), no. 2, 524-540.
- P. Lincoln, J. Mitchell, A. Scedrov, N. Shankar, *Decision problems for proposition linear logic.* Annals of Pure and Applied Logic 56 (1992), 239-311
- A. Urquhart, *The complexity of decision procedures in relevance logic. II*, J. Symbolic Logic 64 (1999), no. 4, 1774-1802.
- N. Galatos, P. Jipsen, *Residuated frames with applications to decidability.* Trans. Amer. Math. Soc. 365 (2013), no. 3, 1219-1249.