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Residuated La�ices

Definition
A (commutative) residuated la�ice is an algebraic structure
R = (R,∨,∧, ·, \, /, 1), such that

I (R,∨,∧) is a la�ice
I (R, ·, 1) is a (commutative) monoid
I For all x, y, z ∈ R

x · y ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y,

where ≤ is the induced la�ice order.

(Commutative) residuated la�ices form a variety, denoted by
(C)RL.
If [r] is a rule (axiom), then (C)RL+ [r] denotes the subvariety by
adjoining [r].
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Known results for �asi-Equational Theory

Undecidable Q.Eq. Theory/ Decidable Q.Eq. Theory/
(Undecidable Deducibility) (Decidable Deducibility)

RL (FL)
CRL (FLe)
RL+ [kmn ] (FL + [kmn ]),
for 1 ≤ n < m & 2 ≤ m < n,

CRL+ [kmn ] (FLe + [kmn ])

[kmn ] denotes the kno�ed rule

RL : (∀x) xn ≤ xm FL :

Π,

m︷ ︸︸ ︷
X, ...,X,Σ ` ψ

Π, X, ...,X︸ ︷︷ ︸
n

,Σ ` ψ
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Decidability:
I Van Alten (2005) showed CRL+ [kmn ], for n 6= m, has the finite

embedability property (FEP).

◦ Galatos & Jipsen (2013) CRL+ [kmn ] + Γ, for any set Γ of
〈∨, ·, 1〉-equations has the FEP, and hence decidability in the
signature 〈≤, ·, 1〉 has been fully characterized.

Undecidability:
I Shown by encoding a Halting Problem for counter machines,

and utilizing the theory of Residuated Frames to guarantee the
completeness of the encoding.

I We inspect (in)equations in the signature 〈∨, ·, 1〉.
◦ Proof theoretically, such axioms correspond to inference
rules, e.g.,

x ≤ x2 ∨ 1 ⇐⇒
Π, X,X,Σ ` ψ Π,Σ ` ψ

Π, X,Σ ` ψ

◦ The work of Chvalovský & Horčík (2016) implies the
undecidability for many such extensions inRL.
◦ So we restrict our investigation to the commutative case.
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Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure W = (W,W ′, N, ◦,,�, 1), s.t.
I (W, ◦, 1) is a monoid and W ′ is a set.
I N ⊆W ×W ′, called the Galois relation, and
I  : W ×W ′ →W ′ and � : W ′ ×W →W ′ such that
I N is a nuclear, i.e. for all u, v ∈W and w ∈W ′,

(u ◦ v) N w i� u N (w � v) i� v N (u  w).

Define . : P(W )→ P(W ′) and / : P(W ′)→ P(W ) via
X. = {y ∈W ′ : ∀x ∈ X, xNy} for each X ⊆W and
Y / = {x ∈W : ∀y ∈ Y, xNy} for each Y ⊆W ′.
Then (., /) is a Galois connection.
So γN defined via X

γN7−−→ X./ is a closure operator on P(W ).
Fact: N is nuclear i� γN is a nucleus.
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]

W+ := (γN [P(W )],∪γN ,∩, ◦γN , \, /, γN ({1})),

X ∪γN Y = γN (X ∪ Y ) and X ◦γN Y = γN (X ◦ Y ),

is a residuated la�ice.

Comment
Certain structural properties (inference rules) for the nuclear
relation N are preserved by the ordering relation ⊆ on W+.

◦We can encode “desirable properties” we want a RL to satisfy in
N .
◦ In particular, (simple) rules in the signature 〈∨, ·, 1〉 are preserved
via (−)+,
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Rules in the signature 〈∨, ·, 1〉 and Linearization

Any equation s = t in the signature 〈∨, ·, 1〉 is equivalent to some
conjunction of simple rules.

(d) x1 · · ·xn ≤
m∨
j=1

x
dj(1)
1 · · ·xdj(n)

n ,

where d = {d1, ..., dm} ⊂ Nn.

Such conjoins can be determined by
the properties of CRL:

I x ≤ y ⇐⇒ x ∨ y = y

I x ∨ y ≤ z ⇐⇒ x ≤ z and y ≤ z
I linearization

E.g., the rule

(∀u)(∀v) u2v ≤ u3 ∨ uv
is equivalent to, via the substitution σ: u σ7−→ x ∨ y and v σ7−→ z,

(∀x)(∀y)(∀z) xyz ≤ x3 ∨ x2y ∨ xy2 ∨ y3 ∨ xz ∨ yz
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Simple rules and Residuated Frames

Let W = (W,W ′, N) be a residuated frame and (d) be the simple
rule given by

x1 · · ·xn ≤
m∨
j=1

x
dj(1)
1 · · ·xdj(n)

n .

We say W |= [d] i� for all u1, ..., un ∈W and v ∈W ′, the following
inference rule is satisfied∏n

i=1 u
d1(i)
i N v · · ·

∏n
i=1 u

dm(i)
i N v∏n

i=1 ui N v
[d]
.

Proposition [Galatos & Jipsen 2013]

All simple rules are preserved by (−)+. In particular,

W |= [d] i� W+ |= (d).
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The Word Problem

A presentation for L is a pair 〈X,E〉 where
I X is a set of generators, and
I E is a set of equations over T (X).

If both X and E are finite, we call the presentation 〈X,E〉 finite.
I We denote the conjunction of equations in E by &E.

We say V has an undecidable word problem if there exists a
finite presentation 〈X,E〉 such that there is no algorithm deciding
whether the q.e. (&E =⇒ s = t) holds in V having s, t ∈ T (X) as
inputs.
Or equivalently, there is a finitely presented algebra A ∈ V
generated by X such that the following set is undecidable:

{(s, t) ∈ T (X)2 : A |= s = t}.

I undecidable word problem⇒ undecidable q.e. theory.
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Counter Machines

A k-CM M = (Rk, Q, P ) is a finite state automaton that has

I a set Rk := {r1, ..., rk} of k registers (bins) that can each
store a non-negative integer (tokens),

I a finite set Q of states with designated final state qf ,
I and a finite set P of instructions p of the form:

◦ Increment register r: q +r q′

◦ Decrement register r: q −r q′
◦ Zero-test register r: q 0r q′,

where q, q′ ∈ Q and r ∈ Rk. E.g,

input configuration inst. output configuration

〈q;n1, ..., ni, ..., nk〉
q +ri q

′
7−−−−−→ 〈q′;n1, ..., ni + 1, ..., nk〉

〈q;n1, ..., ni + 1, ..., nk〉
q −ri q′7−−−−−→ 〈q′;n1, ..., ni, ..., nk〉

〈q;n1, ..., 0, ..., nk〉
q 0ri q

′
7−−−−→ 〈q′;n1, ..., 0, ..., nk〉
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And-branching k-Counter Machines (k-ACM)

A k-ACM M = (Rk, Q, P ), as introduced by Lincoln, Mitchell,
Scedrov, Shankar (1992), is a type of non-deterministic
parallel-computing counter machine that has

I a set Rk := {r1, ..., rk} of k registers (bins) that can each
store a non-negative integer (tokens),

I a finite set Q of states with designated final state qf ,

I and a finite set P of instructions p of the form:
◦ Increment: q ≤p q′r
◦ Decrement: qr ≤p q′

◦ Fork: q ≤p q′ ∨ q′′,
where q, q′, q′′ ∈ Q and r ∈ Rk.
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ACM’s continued

I A configuration C is a word which consists of a single state
and a number of register tokens

C = qrn1
1 rn2

2 · · · r
nk
k .

I Forking instructions allow parallel computation. The “status” u
of a machine at a given moment in a computation is called an
instantaneous description (ID),

u = C1 ∨ C2 ∨ · · · ∨ Cn,
where C1, ..., Cn are configurations.

I An instruction p is a function (relation) on ID’s that can replace
a single configuration C by an ID v, i.e.

C ∨ u ≤p v ∨ u
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Computations

We view computations as order relations on the free commutative
semiring AM = (AM ,∨, ·,⊥, 1) generated by Q ∪Rk, where
M = (Rk, Q, P ) is a k-ACM and

I (AM ,∨,⊥) is a commutative monoid with identity ⊥ =
∨
∅,

I (AM , ·, 1) is a commutative monoid with identity 1, and
I multiplication (·) distributes over “join” (∨).

Each instruction p ∈ P defines a relation ≤p closed under

u ≤p v
ux ≤p vx [·]

and
u ≤p v

u ∨ w ≤p v ∨ w [∨]
,

for u, v, w, x ∈ AM . We define the computation relation ≤M to
be the smallest (·,∨)-compatible preorder containing

⋃
p∈P
≤p.
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Define Fin(M) = {
∨n
i=1 qf : n ∈ Z+} to be the set of Final ID’s.

We say a machine M accepts an ID u (wri�en u ∈ Acc(M)) if
u ≤M v, for some v ∈ Fin(M).

I C1 ∨ · · · ∨ Cn ∈ Acc(M) ⇐⇒ C1, ..., Cn ∈ Acc(M).
I u ∈ Acc(M) =⇒ ∃p1, ..., pn ∈ P and ∃u0, ..., un ∈ ID(M),

u = u0 ≤p1 u1 ≤p2 · · · ≤pn un ∈ Fin(M).

Example Machine

Let M = Meven := ({r}, {q0, q1, qf}, {p1, p2, p3}), with instructions

q0r ≤p1 q1; q1r ≤p2 q0; q0 ≤p3 qf ∨ qf .

I Note that q0r
n ∈ Acc(M) i� n is even.

q0r
4 ≤p1 q1r

3 ≤p2 q0r
2 ≤p1 q1r ≤p2 q0 ≤p3 qf ∨ qf ∈ Acc(M)

q0r
3 ≤p1 q1r

2 ≤p2 q0r ≤p3 qfr ∨ qfr 6∈ Acc(M)
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Undecidable Problem

Theorem [LMSS 1992]

There exists a 2-ACM M such that membership of the set
{u ∈ ID(M) : u ∈ Acc(M)} is undecidable.

Let M = (Rk, Q, P ) be a k-ACM and u ∈ ID(M),
I We can define a quasi-equation accM (u) in the signature
〈∨, ·, 1〉 via

&P =⇒ u ≤ qf .
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ACM’s and Residuated Frames

Let M = (Rk, Q, P ) be a k-ACM and W := (Q ∪Rk)∗ be the free
commutative monoid generated by Q ∪Rk.

The frame WM

Inspired by Horčík (2015), we let W ′ := W and define the relation
NM ⊆W ×W ′ via

x NM z i� xz ∈ Acc(M),

for all x, z ∈W . Observe that, for any x, y, z ∈W ,

xy NM z ⇐⇒ xyz ∈ Acc(M) ⇐⇒ x NM yz.

Since W is commutive it follows that NM is nuclear.

Lemma
WM := (W,W ′, NM ) is a residuated frame, W+

M ∈ CRL, and there
exists a valuation ν : Tm→W+

M such that W+
M , ν |= &P .

Gavin St. John Application 6. Residuated frames and (un)decidability 17 / 34



ACM’s and Residuated Frames

Let M = (Rk, Q, P ) be a k-ACM and W := (Q ∪Rk)∗ be the free
commutative monoid generated by Q ∪Rk.

The frame WM

Inspired by Horčík (2015), we let W ′ := W and define the relation
NM ⊆W ×W ′ via

x NM z i� xz ∈ Acc(M),

for all x, z ∈W .

Observe that, for any x, y, z ∈W ,

xy NM z ⇐⇒ xyz ∈ Acc(M) ⇐⇒ x NM yz.

Since W is commutive it follows that NM is nuclear.

Lemma
WM := (W,W ′, NM ) is a residuated frame, W+

M ∈ CRL, and there
exists a valuation ν : Tm→W+

M such that W+
M , ν |= &P .

Gavin St. John Application 6. Residuated frames and (un)decidability 17 / 34



ACM’s and Residuated Frames

Let M = (Rk, Q, P ) be a k-ACM and W := (Q ∪Rk)∗ be the free
commutative monoid generated by Q ∪Rk.

The frame WM

Inspired by Horčík (2015), we let W ′ := W and define the relation
NM ⊆W ×W ′ via

x NM z i� xz ∈ Acc(M),

for all x, z ∈W . Observe that, for any x, y, z ∈W ,

xy NM z ⇐⇒ xyz ∈ Acc(M) ⇐⇒ x NM yz.

Since W is commutive it follows that NM is nuclear.

Lemma
WM := (W,W ′, NM ) is a residuated frame, W+

M ∈ CRL, and there
exists a valuation ν : Tm→W+

M such that W+
M , ν |= &P .

Gavin St. John Application 6. Residuated frames and (un)decidability 17 / 34



ACM’s and Residuated Frames

Let M = (Rk, Q, P ) be a k-ACM and W := (Q ∪Rk)∗ be the free
commutative monoid generated by Q ∪Rk.

The frame WM

Inspired by Horčík (2015), we let W ′ := W and define the relation
NM ⊆W ×W ′ via

x NM z i� xz ∈ Acc(M),

for all x, z ∈W . Observe that, for any x, y, z ∈W ,

xy NM z ⇐⇒ xyz ∈ Acc(M) ⇐⇒ x NM yz.

Since W is commutive it follows that NM is nuclear.

Lemma
WM := (W,W ′, NM ) is a residuated frame, W+

M ∈ CRL, and there
exists a valuation ν : Tm→W+

M such that W+
M , ν |= &P .

Gavin St. John Application 6. Residuated frames and (un)decidability 17 / 34



ACM’s and Residuated Frames cont.

Let M be a k-ACM and V ⊆ (C)RL a variety.

Theorem
If W+

M ∈ V then for all u ∈ ID(M),

u ∈ Acc(M) if and only if V |= accM (u).

Corollary

If W+
M ∈ V then the computational complexity for the word

problem of V is at least as complex as the membership of Acc(M).

Corollary

Suppose membership of Acc(M) is undecidable. If W+
M ∈ V then V

has an undecidable word problem. In particular, (C)RL has an
undecidable word problem since W+

M̃
∈ CRL, where M̃ is the

machine from LMSS (1992).
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Simple rules in k-ACM’s and the relation ≤dM

Let M = (Rk, Q, P ) be a k-ACM. Given a simple rule, e.g.
(d) : x ≤ x2 ∨ x4, we add “ambient” instructions of the form

t ≤d t2 ∨ t4
(∏n

i=1 ti ≤d̄
m∨
j=1

∏n
i=1 t

dj(i)
i

)
,

for each t ∈ (Q ∪Rk)∗ (t1, ..., tn ∈ (Q ∪Rk)∗).

I As with the instructions in P , we close ≤d under the inference
rules [·] and [∨].

I Similarly, we define the relation ≤dM to be the smallest
(·,∨)-compatible preorder generated by ≤d ∪ ≤M .

I We denote this new machine by dM .

Lemma
Let M = (Rk, Q, P ) be a k-ACM and (d) a simple rule. Then
WdM |= [d], and therefore W+

dM ∈ CRL+ (d).
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Admissibility of simple rules for a machine

Definition
Let M be a k-ACM and (d) be a d-rule. We say (d) is admissible in
M if

Acc(M) = Acc(dM),

i.e., W+
M ∈ CRL+ (d).

However, we will rephrase admissibility as the intermediate notions
register and state admissibility.
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Admissibility cont.

We define ≤d̄ to be the “ambient” instruction, for each x ∈ R∗k
(x1, ..., xn ∈ R∗k),

x ≤d̄ x2 ∨ x4

(∏n
i=1 xi ≤d̄

m∨
j=1

∏n
i=1 x

dj(i)
i

)
,

and define ≤d̄M as usual.

In this way, we see

Acc(M) ⊆ Acc(d̄M) ⊆ Acc(dM).

We say (d) is register (state) admissible in M if
Acc(M) = Acc(d̄M) (Acc(d̄M) = Acc(dM)). Therefore, (d) is
admissible in M i� it is both state and register admissible in M .

Theorem
Let M be a k-ACM and (d) a d-rule. Then (d) is state-admissible in
M i� there is no substitution σ : Var→ Var∗ such that
σ[d] ≡ xk ≤ x or σ[d] ≡ xk ≤ 1.
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I For rules that don’t entail k-mingle (xk ≤ x), it su�ices to show
only register-admissibility for a machine.

I However, for some ACM’s M , it’s possible that C ∈ Acc(d̄M)
but C 6∈ Acc(M).

Example

Consider M = Meven and (d) given by x ≤ x2 ∨ x4.
I q0r

3 6∈ Acc(M) since 3 is odd.
I However, q0r

3 ∈ Acc(dM), witnessed by

q0r
3 = q0r

2r ≤d q0r
2r2 ∨ q0r

2r4 = q0r
4 ∨ q0r

6 ∈ Acc(M)

since q0r
4 ∈ Acc(M) and q0r

6 ∈ Acc(M).
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Goal

Given an ACM M and a d-rule (d), is it possible to construct a new
ACM M ′ such that

(1) C ∈ Acc(M) ⇐⇒ θ(C) ∈ Acc(M ′)

(where θ : ID(M)→ ID(M ′) is some computable function), and

(2) (d) is register-admissible in M ′?

And if so, under what conditions?
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Then MK machine

Let M = (R2, Q, P ) be a 2-ACM and let K > 1 be given. We define
the 3-ACM MK = (R3, QK , PK) such that

I Q ⊂ QK with qF the final state of MK and instruction
(qfr1r2 ≤F qF ∨ qF ) ∈ PK ,

I each forking instruction in P is contained in PK ,
I each increment and decrement instruction of P is replaced by

multiply and divide by K programs, i.e.

q ≤p q′r ∈ P =⇒ qr∀ vp q′rK·∀ ⊆ PK
qr ≤p q′ ∈ P =⇒ qr∀ vp q′rK\∀ ⊆ PK

.

Fact
For each q ∈ Q,

qrn1
1 rn2

2 ∈ Acc(M) ⇐⇒ qrK
n1

1 rK
n2

2 ∈ Acc(MK).
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qr ≤p q′ ∈ P =⇒ qr∀ vp q′rK\∀ ⊆ PK

.

Fact
For each q ∈ Q,

qrn1
1 rn2

2 ∈ Acc(M) ⇐⇒ qrK
n1

1 rK
n2

2 ∈ Acc(MK).
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Detecting applications of ≤d

Observation
Consider a configuration where the contents of some register r is
n = s+ t, wherea�er ≤d is applied to t-many tokens, i.e.,

qrn = qrsrt ≤d qrs(r2t ∨ r4t) = qrs+2t ∨ qrs+4t

Fact
For (d) : x ≤ x2 ∨ x4, if K > 3, it is impossible for s+ 2t and
s+ 4t to both be powers of K .

I Consequently, qrn ∈ Acc(d̄MK) i� qrn ∈ Acc(MK), i.e
Acc(d̄MK) = Acc(MK), so (d) is register-admissible in MK .

I (d) does not entail k-mingle, therefore (d) is MK admissible.
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Undecidable quasi-equational theory for 1-variable d-rules

Let D1 be the set of 1-variable d-rules defined via (d) ∈ D1 i�

(d) : xn ≤
∨
m∈X x

m such that n ∈ X or |X \ {0}| ≥ 2 for some
finite X ⊆ N.

Theorem
Let (d) ∈ D1. Then there exists a K > 1 such that (d) is admissible
in MK for any 2-ACM M .

Theorem
Let Γ ⊂ D1 be finite. Then then CRL+ Γ has an undecidable
quasi-equational theory.

I CRL+ (xn ≤ xm) has the FEP, and hence is decidable for any
n 6= m.

I However, the decidability of CRL+ (xn ≤ xm ∨ 1) remains
open, for any n 6= m > 0.
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The general case.

Let (d) be an n-variable d-rule. We define the set D via (d) ∈ D if
there exists K > 1 such that:

For all s, s′ ∈ Nn, if there exists α, α′ ∈ N such that d • s+ α and
d • s′ + α′ are powers of K for each d ∈ d, then there exists d̄ ∈ d

such that d̄ • s = ln • s and d̄ • s′ = ln • s
′,

where ln(i) = 1 for each i = 1, ..., n.

Theorem
For every (d) ∈ D there exists a K > 1 such that (d) is admissible
in MK , for any 2-ACM M . Consequently, (C)RL+ (d) has an
undecidable quasi-equational theory.
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there exists K > 1 such that:

For all s, s′ ∈ Nn, if there exists α, α′ ∈ N such that d • s+ α and
d • s′ + α′ are powers of K for each d ∈ d, then there exists d̄ ∈ d

such that d̄ • s = ln • s and d̄ • s′ = ln • s
′,

where ln(i) = 1 for each i = 1, ..., n.

Theorem*
For every Γ ⊂ D finite there exists a K > 1 such that (d) is
admissible in MK , for all (d) ∈ Γ and any 2-ACM M . Consequently,
(C)RL+ Γ has an undecidable quasi-equational theory.
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Known results for Equational Theory

[kmn ] represents the kno�ed rule xn ≤ xm

Undecidable Eq. Theory Decidable Eq. Theory
RL
CRL

RL+ [kmn ], 1 ≤ n < m
CRL+ [kmn ]

CRL+ (?)
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Undecidable Equational Theory

Let M = (Rk, Q, P ) be a k-ACM.
We define the equation εnM (u) in the signature 〈→,∨, ·, 1〉 via

εnM (u) := u · (1 ∧
∧
p∈P p

→)n ≤ qf ,

where p→ := C → v, where p is the instruction C ≤ v, and n ≥ 1.

Theorem
Let V ⊆ CRL be a variety and M a 2-ACM such that membership
of Acc(M) is undecidable. Suppose M is V-admissible and

V |= xn ≤
∨
c∈X

xn+c

for some finite X ⊂ Z+. Then for all u ∈ ID(M),

V |= εnM (u) ⇐⇒ V |= accM (u) ⇐⇒ u ∈ Acc(M)

and hence V has an undecidable equational theory.
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Revisiting the definition of D

I Membership of (d) ∈ D is foremost dependent upon whether
there exists very special non-negative integral solutions to a
system of equations determined by certain partitions of
d = {d1, ..., dm} ⊂ Nn viewed as a�ine subspaces Rn.

I The condition of membership of (d) ∈ D is equivalent to:

For all s ∈ Nn, if there exists α ∈ N such that d • s+ α is a
power of K for each d ∈ d, then there exists d̄ ∈ d such that

d̄ • s = ln • s,

which, in turn, is equivalent to the non-existence of a
substitution σ : Var→ Var∗ such that σ(d) is equivalent to a
non-redundant spine, i.e.,∏n

i=1 x
λ(i)
i ≤ (1∨) x

ρ1(1)
1 ∨ xρ2(1)

1 x
ρ2(2)
2 ∨ · · · ∨

∏n
i=1 x

ρn(i)
i

with λ 6= ρn.
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Revisiting the definition of D cont.

Fact
Suppose (d) implies some non-redundant spine, i.e.,∏n

i=1 x
λ(i)
i ≤ (1∨) x

ρ1(1)
1 ∨ xρ2(1)

1 x
ρ2(2)
2 ∨ · · · ∨

∏n
i=1 x

ρn(i)
i

with λ 6= ρn. Then for every injective function φ : N→ N, there
exists s ∈ Nn and α ∈ N such that d • s+α ∈ φ[N ] but d • s 6= ln • s,
for all d ∈ d.

I.e., our method cannot be extended for spines.

Theorem
For any n ∈ N, (d) ∈ D i� there is no substitution σ : Var→ Var∗

such that σ(d) is equivalent to a non-redundant spine.

Open

What is the decidability of CRL with non-redundant spines? E.g.,
x ≤ 1 ∨ x2.
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Thank You!
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