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Residuated Lattices

A (commutative) residuated lattice is an algebraic structure

R=(R,V,A,-\,/,1), such that
> (R,V,A)is a lattice

» (R,-, 1) is a (commutative) monoid

» Forallz,y,z € R
zy<z <= y<z\z < z<z/y,

where < is the induced lattice order.
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Residuated Lattices

A (commutative) residuated lattice is an algebraic structure

R=(R,V,A,-\,/,1), such that
> (R,V,A)is a lattice

» (R,-, 1) is a (commutative) monoid

» Forallz,y,z € R
zy<z <= y<z\z < z<z/y,

where < is the induced lattice order.

(Commutative) residuated lattices form a variety, denoted by
(C)RL.

If [r] is a rule (axiom), then (C)RL + [r| denotes the subvariety by
adjoining [r].
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Known results for Quasi-Equational Theory

Undecidable Q.Eq. Theory/ Decidable Q.Eq. Theory/
(Undecidable Deducibility) (Decidable Deducibility)
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Known results for Quasi-Equational Theory

|
Undecidable Q.Eq. Theory/ Decidable Q.Eq. Theory/

(Undecidable Deducibility) (Decidable Deducibility)
RL (FL)

CRL (FLe)

RL+ k'] (FL 4 [k7']),
forl<n<m&2<m<n,

CRL + [k (FLe + [k7'])

[k'] denotes the knotted rule

m

——
X, X,SF¢

RL: Vx)a™ <™ |FL: ILX,.., X, X F1
———

n
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Decidability:
> Van Alten (2005) showed CRL + [k]'], for n # m, has the finite
embedability property (FEP).
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o Galatos & Jipsen (2013) CRL + [k}}'] + T, for any set I of
(V, -, 1)-equations has the FEP, and hence decidability in the
signature (<, -, 1) has been fully characterized.
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» Shown by encoding a Halting Problem for counter machines,
and utilizing the theory of Residuated Frames to guarantee the
completeness of the encoding.
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Decidability:

> Van Alten (2005) showed CRL + [k]'], for n # m, has the finite
embedability property (FEP).

o Galatos & Jipsen (2013) CRL + [k}}'] + T, for any set I of

(V, -, 1)-equations has the FEP, and hence decidability in the

signature (<, -, 1) has been fully characterized.
Undecidability:

» Shown by encoding a Halting Problem for counter machines,
and utilizing the theory of Residuated Frames to guarantee the
completeness of the encoding.

» We inspect (in)equations in the signature (V, -, 1).

o Proof theoretically, such axioms correspond to inference
rules, e.g.,

ILX, X, Sk ILY

<2’V < ILX,SF ¢
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undecidability for many such extensions in RL.
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Decidability:

> Van Alten (2005) showed CRL + [k]'], for n # m, has the finite
embedability property (FEP).

o Galatos & Jipsen (2013) CRL + [k}}'] + T, for any set I of

(V, -, 1)-equations has the FEP, and hence decidability in the

signature (<, -, 1) has been fully characterized.
Undecidability:

» Shown by encoding a Halting Problem for counter machines,
and utilizing the theory of Residuated Frames to guarantee the
completeness of the encoding.

» We inspect (in)equations in the signature (V, -, 1).

o Proof theoretically, such axioms correspond to inference
rules, e.g.,
ILX, X, Y-y ILYF9¢
<2’V < I,X,S

o The work of Chvalovsky & Hor¢ik (2016) implies the
undecidability for many such extensions in RL.
o So we restrict our investigation to the commutative case.
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Residuated frames

Definition [Galatos & Jipsen 2013]
A residuated frame is a structure W = (W, W' N, o, \, /, 1), s.t.

» (W, 0,1) is a monoid and W' is a set.
» N CW x W/, called the Galois relation, and
» \: W xW = W'and )/ : W x W — W such that

» N is a nuclear, i.e. for all u,v € W and w € W/,
(uov) Nw iff uN (w/v) iff vN (ul\w).
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Residuated frames

Definition [Galatos & Jipsen 2013]

A residuated frame is a structure W = (W, W' N, o, \, /, 1), s.t.
» (W, 0,1) is a monoid and W' is a set.
» N CW x W/, called the Galois relation, and
» \: W xW = W'and )/ : W x W — W such that

» N is anuclear,i.e. forallu,v € Wand w € W,
(uov) Nw iff uN (w/v) iff vN (ul\w).

Define” : P(W) — P(W') and < : P(W') — P(W) via

Xt ={ye W' :Vxe X, xNy} foreach X C W and
Yi={x e W:VyeV, Ny} foreachY C W'

Then (7, 9) is a Galois connection.

So vy defined via X "% X9 s a closure operator on P (V).
Fact: N is nuclear iff vy is a nucleus.
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]
W+ .= (W [P(W)], Uyns M Oy \,/, v ({1})),

XUy, Y = (X UY)and X 0y, Y = y5(X oY),

is a residuated lattice.
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]
W= (’VN[,P(W)]? Uy M, Oy \7 /a 7N({1}))7

XUy Y=9nv(XUY)and X oy, Y =n(X oY),
is a residuated lattice.

Certain structural properties (inference rules) for the nuclear
relation NV are preserved by the ordering relation C on W,
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Residuated frames cont.

Theorem [Galatos & Jipsen 2013]
W= (’VN[,P(W)]? Uy M, Oy \7 /a 7N({1}))7

XUy Y=9nv(XUY)and X oy, Y =n(X oY),
is a residuated lattice.

Certain structural properties (inference rules) for the nuclear
relation NV are preserved by the ordering relation C on W,

o We can encode “desirable properties” we want a RL to satisfy in
N.

o In particular, (simple) rules in the signature (V, -, 1) are preserved
via (—)™,
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Rules in the signature (V, -, 1) and Linearization

Any equation s = ¢ in the signature (V, -, 1) is equivalent to some
conjunction of simple rules.

d) 21 a0 <V x‘ff(l)...g;ﬁj(”),
j=1

whered = {dy, ...,d,,} C N™.

Gavin St.John Application 6. Residuated frames and (un)decidability



Rules in the signature (V, -, 1) and Linearization

Any equation s = ¢ in the signature (V, -, 1) is equivalent to some
conjunction of simple rules.

d) 21 a0 <V x‘ff(l)...g;ﬁj(”),
j=1

where d = {d1, ..., d,, } C N™. Such conjoins can be determined by
the properties of CRL:

> <y <= xVy=y
> xVy<z << xz<zandy <z

» linearization
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Rules in the signature (V, -, 1) and Linearization

Any equation s = ¢ in the signature (V, -, 1) is equivalent to some
conjunction of simple rules.

d) 21 a0 <V x‘ff(l)...g;ﬁj(”),
j=1

where d = {d1, ..., d,, } C N™. Such conjoins can be determined by
the properties of CRL:

> <y <= xVy=y
> xVy<z << xz<zandy <z

» linearization
E.g., the rule

(Vu) (Vo) v?v < ud vV uw
is equivalent to, via the substitution o: u s 2V yand v s z,
(Vo) (Vy)(V2) 2yz < 23V aly Vay? V3 Vaz Vyz
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Simple rules and Residuated Frames

Let W = (W, W' N) be a residuated frame and (d) be the simple
rule given by

Mmool d;
z1an <\ xla( )mxn](n).
j=1
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Simple rules and Residuated Frames

Let W = (W, W' N) be a residuated frame and (d) be the simple
rule given by

Mmool d;
z1an <\ xla( )mxn](n).
j=1

We say W = [d] iff for all uq, ..., u,, € W and v € W/, the following
inference rule is satisfied

[T, u?l(i) Nv - I, u;im(z‘) N o

o]

[T, ui Nv
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Simple rules and Residuated Frames

Let W = (W, W' N) be a residuated frame and (d) be the simple
rule given by

Mmool d;
z1an <\ xla( )mxn](n).
j=1

We say W = [d] iff for all uq, ..., u,, € W and v € W/, the following
inference rule is satisfied
Iy No - [T u N
D [d]
[[[Luwi Nwv :

Proposition [Galatos & Jipsen 2013]

All simple rules are preserved by (—)*. In particular,

W k= [d] iff W+ = (d).
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The Word Problem

A presentation for L is a pair (X, E) where
> X is a set of generators, and
» F is a set of equations over T'(X).
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The Word Problem

A presentation for L is a pair (X, E) where
> X is a set of generators, and
» F is a set of equations over T'(X).

If both X and FE are finite, we call the presentation (X, E) finite.
> We denote the conjunction of equations in E by &E.

|
We say V has an undecidable word problem if there exists a
finite presentation (X, E') such that there is no algorithm deciding
whether the q.e. (&E = s =t) holds in V having s,t € T'(X) as
inputs.
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|
We say V has an undecidable word problem if there exists a
finite presentation (X, E') such that there is no algorithm deciding
whether the q.e. (&E = s =t) holds in V having s,t € T'(X) as
inputs.
Or equivalently, there is a finitely presented algebra A € V
generated by X such that the following set is undecidable:

{(5,8) eT(X)2: A = s =t}
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The Word Problem

A presentation for L is a pair (X, E) where

> X is a set of generators, and

» F is a set of equations over T'(X).
If both X and FE are finite, we call the presentation (X, E) finite.

> We denote the conjunction of equations in E by &E.

|

We say V has an undecidable word problem if there exists a
finite presentation (X, E') such that there is no algorithm deciding
whether the q.e. (&E = s =t) holds in V having s,t € T'(X) as
inputs.
Or equivalently, there is a finitely presented algebra A € V
generated by X such that the following set is undecidable:

{(5,8) eT(X)2: A = s =t}

» undecidable word problem = undecidable g.e. theory.
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Counter Machines

A k-CM M = (R, Q, P) is a finite state automaton that has
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» aset Ry := {r1,..., 7} of k registers (bins) that can each
store a non-negative integer (tokens),
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Counter Machines

A k-CM M = (R, Q, P) is a finite state automaton that has

» aset Ry := {r1,..., 7} of k registers (bins) that can each
store a non-negative integer (tokens),

> afinite set () of states with designated final state ¢y,
» and a finite set P of instructions p of the form:

o Increment registerr: ¢ +r q’
o Decrement registerr: ¢ —7 q’
o Zero-test register 7: q Or q’,

where ¢,¢' € Q and r € Ry. E.g,
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Counter Machines

A k-CM M = (R, Q, P) is a finite state automaton that has

» aset Ry := {r1,..., 7} of k registers (bins) that can each
store a non-negative integer (tokens),

> afinite set () of states with designated final state ¢y,
» and a finite set P of instructions p of the form:

o Increment registerr: ¢ +r q’
o Decrement registerr: ¢ —7 q’
o Zero-test register 7: q Or q’,

where ¢,¢' € Q and r € Ry. E.g,

input configuration  inst.  output configuration
q+riq /
(g;n1y oy njyeymg) ——— (¢sny,yni + 1, ng)
q-riq
(g;n1,oomi+ 1, nk) ——— {¢sn1, .o, o, ng)
q0r; ¢

(g;n1, ., 0, i) ———— (¢'sn1, .., 0, ng)
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And-branching k-Counter Machines (k-ACM)

A k-ACM M = (R, Q, P), as introduced by Lincoln, Mitchell,
Scedrov, Shankar (1992), is a type of non-deterministic
parallel-computing counter machine that has

» aset Ry := {ry,..., i} of k registers (bins) that can each
store a non-negative integer (tokens),

» afinite set () of states with designated final state ¢,
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And-branching k-Counter Machines (k-ACM)

A k-ACM M = (R, Q, P), as introduced by Lincoln, Mitchell,
Scedrov, Shankar (1992), is a type of non-deterministic
parallel-computing counter machine that has

» aset Ry := {ry,..., i} of k registers (bins) that can each
store a non-negative integer (tokens),

» afinite set () of states with designated final state ¢,
» and a finite set P of instructions p of the form:

o Increment: ¢ <P ¢'r

o Decrement: qr <P ¢

o Fork: q <P ¢ Vv,
where ¢,¢',¢" € Q and r € Ry.
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ACM’s continued

» A configuration C is a word which consists of a single state
and a number of register tokens

— ni,.n2 Nk
C=qri'ry®---r.r.

Gavin St.John Application 6. Residuated frames and (un)decidability 13/34



ACM’s continued

» A configuration C is a word which consists of a single state
and a number of register tokens
C=qri'ry?---rp*.
» Forking instructions allow parallel computation. The “status” u
of a machine at a given moment in a computation is called an
instantaneous description (ID),

u=C1VCy V-V,

where C1, ..., C), are configurations.
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ACM’s continued

» A configuration C is a word which consists of a single state
and a number of register tokens

_ ni n N
C=qri'ry®---r.r.
» Forking instructions allow parallel computation. The “status” u

of a machine at a given moment in a computation is called an
instantaneous description (ID),

u=0C1VCyV---VCy,
where C1, ..., C), are configurations.

> An instruction p is a function (relation) on ID’s that can replace
a single configuration C by an ID v, i.e.

Cvu<PoyvVu
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Computations

We view computations as order relations on the free commutative
semiring Apr = (A, V, -, L, 1) generated by Q U Ry, where
M = (Ry,Q, P) is a k-ACM and
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Computations

We view computations as order relations on the free commutative
semiring Ay = (Aar, V, -, L, 1) generated by Q U Ry, where
M = (Ry,Q, P) is a k-ACM and

» (Apr, V, L) is a commutative monoid with identity L =\/{),
» (Ap, -, 1) is a commutative monoid with identity 1, and

» multiplication (-) distributes over “join” (V).
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Computations

We view computations as order relations on the free commutative
semiring Ay = (Aar, V, -, L, 1) generated by Q U Ry, where
M = (Ry,Q, P) is a k-ACM and
» (Apr, V, L) is a commutative monoid with identity L =\/{),
» (Ap, -, 1) is a commutative monoid with identity 1, and
» multiplication (-) distributes over “join” (V).
Each instruction p € P defines a relation <P closed under
s

ur <P oyzx

B Vi
and uVw<PuvVuw ,

for u,v,w,x € Ap.
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Computations

We view computations as order relations on the free commutative
semiring Ay = (Aar, V, -, L, 1) generated by Q U Ry, where
M = (Ry,Q, P) is a k-ACM and

» (Apr, V, L) is a commutative monoid with identity L =\/{),
» (Ap, -, 1) is a commutative monoid with identity 1, and
» multiplication (-) distributes over “join” (V).

Each instruction p € P defines a relation <P closed under

[

u <Py

ur <P oyzx

B Vi
and uVw<PuvVuw ,

for u,v,w,x € Apr. We define the computation relation <, to

be the smallest (-, V)-compatible preorder containing |J <”.
peP
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Define Fin(M) = {\/[_, ¢y : n € Z"} to be the set of Final ID’s.
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We say a machine M accepts an ID u (written u € Acc(M)) if
u <pr v, for some v € Fin(M).
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Define Fin(M) = {\/[_, ¢y : n € Z"} to be the set of Final ID’s.
We say a machine M accepts an ID u (written u € Acc(M)) if
u <pr v, for some v € Fin(M).

» C1V---VC, € Acc(M) <= (4,...,C, € Acc(M).
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Define Fin(M) = {\/[_, ¢y : n € Z"} to be the set of Final ID’s.
We say a machine M accepts an ID u (written u € Acc(M)) if
u <pr v, for some v € Fin(M).

» C1V---VC, € Acc(M) <= (4,...,C, € Acc(M).
» u € Acc(M) = dpi1,...,pn € P and Juy, ..., u, € ID(M),
u=ug <Py <P2...<Pry, € Fin(M).
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Define Fin(M) = {\/[_, ¢y : n € Z"} to be the set of Final ID’s.
We say a machine M accepts an ID u (written u € Acc(M)) if
u <pr v, for some v € Fin(M).

» C1V---VC, € Acc(M) <= (4,...,C, € Acc(M).
» u € Acc(M) = dpi1,...,pn € P and Juy, ..., u, € ID(M),
u=ug <Py <P2...<Pry, € Fin(M).

Example Machine

Let M = Meven := ({7}, {q0, a1, ar}, {p1,p2,p3}), with instructions

qor <P qi;  qur <P? qo;  qo <P3 qp Vqy.
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Define Fin(M) = {\/[_, ¢y : n € Z"} to be the set of Final ID’s.
We say a machine M accepts an ID u (written u € Acc(M)) if
u <pr v, for some v € Fin(M).

» C1V---VC, € Acc(M) <= (4,...,C, € Acc(M).
» u € Acc(M) = dpi1,...,pn € P and Juy, ..., u, € ID(M),
u=ug <Py <P2...<Pry, € Fin(M).

Example Machine

Let M = Meven := ({7}, {q0, a1, ar}, {p1,p2,p3}), with instructions

qor <P qi;  qur <P? qo;  qo <P3 qp Vqy.

» Note that gor™ € Acc(M) iff n is even.
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Define Fin(M) = {\/[_, ¢y : n € Z"} to be the set of Final ID’s.
We say a machine M accepts an ID u (written u € Acc(M)) if
u <pr v, for some v € Fin(M).

» C1V---VC, € Acc(M) <= (4,...,C, € Acc(M).
» u € Acc(M) = dpi1,...,pn € P and Juy, ..., u, € ID(M),
u=ug <Py <P2...<Pry, € Fin(M).

Example Machine

Let M = Meven := ({7}, {q0, a1, ar}, {p1,p2,p3}), with instructions

qor <P qi;  qur <P? qo;  qo <P3 qp Vqy.

» Note that gor™ € Acc(M) iff n is even.

qor* <P qur3 <P2 gor? <Pt gyr <P2 gy <P3 q; V g5 € Acc(M)

q0T3 Spl Q17°2 sz qor §p3 qsr \Vi qrr € ACC(M)
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Undecidable Problem

Theorem [LMSS 1992]

There exists a 2-ACM M such that membership of the set
{u € ID(M) : u € Acc(M)} is undecidable.
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Undecidable Problem

Theorem [LMSS 1992]

There exists a 2-ACM M such that membership of the set
{u € ID(M) : u € Acc(M)} is undecidable.
Let M = (R, @, P) be a k-ACM and u € ID(M),

» We can define a quasi-equation accy(u) in the signature
(V,-, 1) via

&P = u < qy.
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ACM'’s and Residuated Frames

Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.
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ACM’s and Residuated Frames
Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.
The frame Wy

Inspired by Horéik (2015), we let W’ := W and define the relation
Ny CW x W via

x Ny z iff zz € Acc(M),

forall x,z € W.
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ACM'’s and Residuated Frames

Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.

The frame Wy

Inspired by Horéik (2015), we let W’ := W and define the relation
Ny CW x W via

x Ny z iff zz € Acc(M),
for all z, z € W. Observe that, for any z,y,z € W,
xy Ny z <= zyz € Acc(M) <= = Ny yz.

Since W is commutive it follows that Ny, is nuclear.
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ACM’s and Residuated Frames
Let M = (R, @, P) be a k-ACM and W := (Q U Ry)* be the free
commutative monoid generated by QQ U Ry.
The frame Wy

Inspired by Horéik (2015), we let W’ := W and define the relation
Ny CW x W' via

x Ny z iff zz € Acc(M),
for all z, z € W. Observe that, for any z,y,z € W,
xy Ny z <= zyz € Acc(M) <= = Ny yz.

Since W is commutive it follows that Ny, is nuclear.

Lemma

Wy := (W, W' Nyy) is a residuated frame, W]'{'/[ € CRL, and there
exists a valuation v : Tm — W}, such that W3, v = &P.
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ACM'’s and Residuated Frames cont.

Let M be a k-ACM and V C (C)RL a variety.

If W}, € V then for all u € ID(M),

u € Acc(M) if and only if V = accpr(u).
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ACM'’s and Residuated Frames cont.

Let M be a k-ACM and V C (C)RL a variety.

If W}, € V then for all u € ID(M),

u € Acc(M) if and only if V = accpr(u).

Corollary

If W}CI € V then the computational complexity for the word
problem of V is at least as complex as the membership of Acc(M).
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ACM'’s and Residuated Frames cont.

Let M be a k-ACM and V C (C)RL a variety.

Theorem
If W}, € V then for all u € ID(M),

u € Acc(M) if and only if V = accpr(u).

Corollary

If W}CI € V then the computational complexity for the word
problem of V is at least as complex as the membership of Acc(M).

Corollary
Suppose membership of Acc(M) is undecidable. If W;, € V then V

has an undecidable word problem.
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ACM'’s and Residuated Frames cont.

Let M be a k-ACM and V C (C)RL a variety.

Theorem
If W}, € V then for all u € ID(M),

u € Acc(M) if and only if V = accpr(u).

Corollary

If W}CI € V then the computational complexity for the word
problem of V is at least as complex as the membership of Acc(M).

Corollary

Suppose membership of Acc(M) is undecidable. If W;, € V then V
has an undecidable word problem. In particular, (C)RL has an
undecidable word problem since W]E € CRL, where M is the
machine from LMSS (1992).
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Simple rules in k-ACM’s and the relation <g,

Let M = (Ry, @, P) be a k-ACM. Given a simple rule, e.g.
(d) : x < 22 V 2%, we add “ambient” instructions of the form

d 4 d d(z
t<dt?vi <H t; < \/,Hﬁl )

foreacht € (QU Rg)* (t1.....1, € (Q U Ry)").
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Simple rules in k-ACM’s and the relation <g,
Let M = (Ry, @, P) be a k-ACM. Given a simple rule, e.g.

(d) : x < 22 V 2%, we add “ambient” instructions of the form

d 4 d rl(z
t<dt?vi <H t; < \/,Hﬁl )

foreacht € (QU Rg)* (t1.....1, € (Q U Ry)").
» As with the instructions in P, we close <9 under the inference
rules [-] and [V].
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Simple rules in k-ACM’s and the relation <g,

Let M = (Ry, @, P) be a k-ACM. Given a simple rule, e.g.
(d) : x < 22 V 2%, we add “ambient” instructions of the form

d 4 d rl(z
t<dt?vi (H t; < \/HH )

foreacht € (QU Rg)* (t1.....1, € (Q U Ry)").
» As with the instructions in P, we close <9 under the inference
rules [-] and [V].
> Similarly, we define the relation <q,s to be the smallest
(-, V)-compatible preorder generated by <9 U <.
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Simple rules in k-ACM’s and the relation <g,

Let M = (Ry, @, P) be a k-ACM. Given a simple rule, e.g.
(d) : x < 22 V 2%, we add “ambient” instructions of the form

d 4 d rl(z
t<dt?vi (H t; < \/HH )

foreacht € (QU Rg)* (t1.....1, € (Q U Ry)").
» As with the instructions in P, we close <9 under the inference
rules [-] and [V].
> Similarly, we define the relation <q,s to be the smallest
(-, V)-compatible preorder generated by <9 U <.
> We denote this new machine by d/.
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Simple rules in k-ACM’s and the relation <g,

Let M = (Ry, @, P) be a k-ACM. Given a simple rule, e.g.
(d) : x < 22 V 2%, we add “ambient” instructions of the form

m

t<de?vid (Hj" by <O VI lf’,.l/‘”),
J=

foreacht € (QU Rg)* (t1.....1, € (Q U Ry)").
» As with the instructions in P, we close <9 under the inference
rules [-] and [V].
> Similarly, we define the relation <q,s to be the smallest
(-, V)-compatible preorder generated by <9 U <.
> We denote this new machine by d/.

Lemma

Let M = (R, @, P) be a k-ACM and (d) a simple rule. Then
W = [d], and therefore W, € CRL + (d).
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Admissibility of simple rules for a machine

Let M be a k-ACM and (d) be a d-rule. We say (d) is admissible in
M if

Acc(M) = Acc(dM),
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Admissibility of simple rules for a machine

Definition
Let M be a k-ACM and (d) be a d-rule. We say (d) is admissible in
M if

Acc(M) = Acc(dM),
ie, Wi, € CRL+ (d).
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Admissibility of simple rules for a machine

Definition
Let M be a k-ACM and (d) be a d-rule. We say (d) is admissible in
M if
Acc(M) = Acc(dM),
ie, Wi, € CRL+ (d).

However, we will rephrase admissibility as the intermediate notions
register and state admissibility.
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Admissibility cont.

We define Sa to be the “ambient” instruction, for each x € R},
(1, ..., Ty € RY),

- m

z<davat ],z < \/thl ,

and define <, as usual.
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Admissibility cont.

We define Sa to be the “ambient” instruction, for each x € R},
(1, ..., Ty € RY),

- m

z<davat ],z < \/thl ,

and define <g,, as usual. In this way, we see

Acc(M) C Acc(dM) C Acc(dM).
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Admissibility cont.

We define Sa to be the “ambient” instruction, for each x € R},
(1, ..., Ty € RY),

z <922Vt <H”11 <a\/H[ ll )
and define <g,, as usual. In this way, we see
Acc(M) C Acc(dM) C Acc(dM).

We say (d) is register (state) admissible in M if
Acc(M) = Acc(dM) (Acc(dM) = Acc(dM)).
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Admissibility cont.

We define Sa to be the “ambient” instruction, for each x € R},
(1, ..., Ty € RY),

— — m
r <4 2?2Vt <H”11 <d \/H( 11 )

and define <g,, as usual. In this way, we see
Acc(M) C Acc(dM) C Acc(dM).

We say (d) is register (state) admissible in M if
Acc(M) = Acc(dM) (Acc(dM) = Acc(dM)). Therefore, (d) is
admissible in M iff it is both state and register admissible in M.
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Admissibility cont.

We define Sa to be the “ambient” instruction, for each x € R},
(1, ...,z € RY),
m

d . .2 4 . —d .dj (4)
r<ia®Vaz (H:‘/Ni = _\/l [[ie = )v
j=

and define <g,, as usual. In this way, we see

Acc(M) C Acc(dM) C Acc(dM).
We say (d) is register (state) admissible in M if
Acc(M) = Acc(dM) (Acc(dM) = Acc(dM)). Therefore, (d) is
admissible in M iff it is both state and register admissible in M.
Theorem

Let M be a k-ACM and (d) a d-rule. Then (d) is state-admissible in
M iff there is no substitution o : Var — Var® such that
od=2F <zorold=2"<1
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» For rules that don’t entail k-mingle (z* < z), it suffices to show
only register-admissibility for a machine.
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» For rules that don’t entail k-mingle (z* < z), it suffices to show
only register-admissibility for a machine.

» However, for some ACM’s M, it’s possible that C' € Acc(dM)
but C' & Acc(M).
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> For rules that don’t entail k-mingle (a:k < ), it suffices to show
only register-admissibility for a machine.

» However, for some ACM’s M, it’s possible that C' € Acc(dM)
but C' & Acc(M).

Consider M = Meyep, and (d) given by z < 22 v 2.
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> For rules that don’t entail k-mingle (a:k < ), it suffices to show
only register-admissibility for a machine.

» However, for some ACM’s M, it’s possible that C' € Acc(dM)
but C' & Acc(M).

Consider M = Meyep, and (d) given by z < 22 v 2.
> qor3 & Acc(M) since 3 is odd.
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> For rules that don’t entail k-mingle (a:k < ), it suffices to show
only register-admissibility for a machine.

» However, for some ACM’s M, it’s possible that C' € Acc(dM)
but C' & Acc(M).

Consider M = Meyep, and (d) given by z < 22 v 2.
> qor3 & Acc(M) since 3 is odd.
» However, gor® € Acc(dM), witnessed by

qor3 = q0r2r §d q0r2r2 V qor2r4 = q0r4 V qor6 € ACC(M)
since qor* € Acc(M) and gor® € Acc(M).
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Goal

Given an ACM M and a d-rule (d), is it possible to construct a new
ACM M’ such that

(1) C € Ace(M) < 0(C) € Acc(M')
(where 6 : ID(M) — ID(M’) is some computable function), and
(2) (d) is register-admissible in M'?

And if so, under what conditions?
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM My = (Rs3, Qk, Pr) such that
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM My = (Rs3, Qk, Pr) such that
> () C Qg with gp the final state of Mg and instruction
(grrira <¥ qr V qr) € Pk,
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM My = (Rs3, Qk, Pr) such that
> () C Qg with gp the final state of Mg and instruction
(qrrire <t qp V qr) € Pk,
» each forking instruction in P is contained in P,
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM My = (Rs3, Qk, Pr) such that
> () C Qg with gp the final state of Mg and instruction
(qrrire <t qp V qr) € Pk,
» each forking instruction in P is contained in P,

» each increment and decrement instruction of P is replaced by
multiply and divide by K programs, i.e.
q <P ¢r €eP = @ "CPgrkY CPg
gr <P ¢ eP = gVCPqr*V C Py’
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Then Mgk machine

Let M = (R2,Q, P) be a 2-ACM and let K > 1 be given. We define
the 3-ACM My = (Rs3, Qk, Pr) such that
> () C Qg with gp the final state of Mg and instruction
(qrrire <F qp V qr) € Py,
» each forking instruction in P is contained in P,
» each increment and decrement instruction of P is replaced by
multiply and divide by K programs, i.e.
q <P ¢r €eP = @ "CPgrkY CPg
qr <P ¢ €eP = q@VCPg¢rk\V C Py

For each g € Q,

ni,.n2

qri'ry? € Acec(M) <= qrk™ rK™ € Acc(Mk).
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Detecting applications of <¢

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — QTST't Sd QTS(T2t v 7¢41€) _ q7”‘5+2t V, qrs+4t
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Detecting applications of <¢

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — qrsrt Sd QT‘S(T2t v 7‘4t) _ q7’8+2t V. qrs+4t

Fact

For (d) : @ <22V a?, if K > 3, it is impossible for s + 2t and
s + 4t to both be powers of K.
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Detecting applications of <¢

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — qrsrt Sd QT‘S(T2t v 7‘4t) _ q7’8+2t V. qrs+4t

Fact

For (d) : @ <22V a?, if K > 3, it is impossible for s + 2t and
s + 4t to both be powers of K.
» Consequently, gr" € Acc(dMy) iff gr™ € Acc(Mg), i.e
Acc(dMg) = Acc(Mk), so (d) is register-admissible in M.
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Detecting applications of <¢

Consider a configuration where the contents of some register r is
n = s + t, whereafter <4 is applied to t-many tokens, i.e.,

qrn — qrsrt Sd QT‘S(T2t v 7‘4t) _ q7’8+2t V. qrs+4t

Fact

For (d) : @ <22V a?, if K > 3, it is impossible for s + 2t and
s + 4t to both be powers of K.

» Consequently, gr" € Acc(dMy) iff gr™ € Acc(Mg), i.e
Acc(dMg) = Acc(Mk), so (d) is register-admissible in M.
» (d) does not entail k-mingle, therefore (d) is My admissible.
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Undecidable quasi-equational theory for 1-variable d-rules

Let D be the set of 1-variable d-rules defined via (d) € D iff

(d) : 2™ < V,,ex ™ such that n € X or | X \ {0}] > 2 for some
finite X C N.

Let (d) € ©;. Then there exists a K > 1 such that (d) is admissible
in M for any 2-ACM M.
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Undecidable quasi-equational theory for 1-variable d-rules

Let D be the set of 1-variable d-rules defined via (d) € D, iff

(d) : 2™ < V,,ex ™ such that n € X or | X \ {0}] > 2 for some
finite X C N.

Let (d) € ©;. Then there exists a K > 1 such that (d) is admissible
in M for any 2-ACM M.

Theorem

Let I' € ©; be finite. Then then CRL + I' has an undecidable
quasi-equational theory.
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Undecidable quasi-equational theory for 1-variable d-rules

Let D be the set of 1-variable d-rules defined via (d) € D, iff

(d) : 2™ < V,,ex ™ such that n € X or | X \ {0}] > 2 for some
finite X C N.

Let (d) € ©;. Then there exists a K > 1 such that (d) is admissible
in M for any 2-ACM M.

Theorem

Let I' € ©; be finite. Then then CRL + I' has an undecidable
quasi-equational theory.

» CRL+ (z" < 2™) has the FEP, and hence is decidable for any
n#£m.

» However, the decidability of CRL + (2" < 2™ V 1) remains
open, for any n # m > 0.
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The general case.

|
Let (d) be an n-variable d-rule. We define the set © via (d) € D if
there exists K > 1 such that:

For all 5,s" € N, if there exists a,a’ € N such that d+ s + a and
d- s’ + o' are powers of K for each d € d, then there exists d € d
suchthatd-s=1[,*sandd-s' =1, -5,

where [,,(i) = 1 foreachi =1, ...,n.
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The general case.

|
Let (d) be an n-variable d-rule. We define the set © via (d) € D if
there exists K > 1 such that:

For all 5,s" € N, if there exists a,a’ € N such that d+ s + a and
d- s’ + o' are powers of K for each d € d, then there exists d € d
suchthatd-s=1[,*sandd-s' =1, -5,

where [,,(i) = 1 foreachi =1, ...,n.

Theorem

For every (d) € © there exists a K > 1 such that (d) is admissible
in My, for any 2-ACM M. Consequently, (C)RL + (d) has an
undecidable quasi-equational theory.
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The general case.

|
Let (d) be an n-variable d-rule. We define the set © via (d) € © if
there exists K > 1 such that:

Forall s, s" € N, if there exists @, @’ € N such that d - s + o and
d+ s’ + o' are powers of K for each d € d, then there exists d € d
suchthatd-s=1,-sandd-s' =1, -5,

where [,,(i) = 1 foreachi=1,...,n.

Theorem™

For every I' C D finite there exists a K > 1 such that (d) is
admissible in M, for all (d) € I" and any 2-ACM M. Consequently,
(C)RL + T has an undecidable quasi-equational theory.
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Known results for Equational Theory

[k7"] represents the knotted rule z™ < z™

Undecidable Eq. Theory | Decidable Eq. Theory
RL
CRL

RL+ k1, 1<n<m
CRL + k]

CRL+ (?)
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Undecidable Equational Theory

Let M = (R, @, P) be a k-ACM.
We define the equation €}, (u) in the signature (—,V, -, 1) via

) == u- (LA \yep ™)™ < 45,

where p~ := C' — v, where p is the instruction C < v, and n > 1.
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Undecidable Equational Theory

Let M = (Rg, @, P) be a k-ACM.
We define the equation €}, (u) in the signature (—,V, -, 1) via

() = u- (LA Apepp™)" < 7.

where p~ := C' — v, where p is the instruction C < v, and n > 1.

Theorem

Let V C CRL be a variety and M a 2-ACM such that membership
of Acc(M) is undecidable.
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Undecidable Equational Theory

Let M = (Rg, @, P) be a k-ACM.
We define the equation €}, (u) in the signature (—,V, -, 1) via

() = u- (LA Apepp™)" < 7.

where p~ := C' — v, where p is the instruction C < v, and n > 1.

Theorem

Let V C CRL be a variety and M a 2-ACM such that membership
of Acc(M) is undecidable. Suppose M is V-admissible and

V ): xn S V xn—Q—C
ceX

for some finite X C Zt.
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Undecidable Equational Theory

Let M = (Rg, @, P) be a k-ACM.

We define the equation €}, (u) in the signature (—,V, -, 1) via
() = - (LA Ayepp™)" < a5,

where p~ := C' — v, where p is the instruction C < v, and n > 1.

Theorem

Let V C CRL be a variety and M a 2-ACM such that membership
of Acc(M) is undecidable. Suppose M is V-admissible and

V ): xn S V xn—Q—C
ceX

for some finite X C Z*. Then for all u € ID(M),
VEé(u) < VEaccy(u) <= u e Acc(M)

and hence V has an undecidable equational theory.
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Revisiting the definition of ®©

» Membership of (d) € D is foremost dependent upon whether
there exists very special non-negative integral solutions to a
system of equations determined by certain partitions of
d ={di,...,dn} C N" viewed as affine subspaces R".
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Revisiting the definition of ®©

» Membership of (d) € D is foremost dependent upon whether
there exists very special non-negative integral solutions to a
system of equations determined by certain partitions of
d ={di,...,dn} C N" viewed as affine subspaces R".

» The condition of membership of (d) € D is equivalent to:

For all s € N, if there exists & € N such thaE des+aisa
power of K for each d € d, then there exists d € d such that
des=1,-s,
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Revisiting the definition of ®©

» Membership of (d) € D is foremost dependent upon whether
there exists very special non-negative integral solutions to a
system of equations determined by certain partitions of
d ={di,...,dn} C N" viewed as affine subspaces R".

» The condition of membership of (d) € D is equivalent to:

For all s € N, if there exists &« € N such thatd+s+ aisa
power of K for each d € d, then there exists d € d such that
des=1,-s,
which, in turn, is equivalent to the non-existence of a
substitution o : Var — Var® such that o(d) is equivalent to a
non-redundant spine, i.e.,

I8 20 < (1v) x’l)l(l) v xr{z(l)x/;(?) Ve VTR, $fn(i)

i=1"1

with X\ # pp,.
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Revisiting the definition of © cont.

Suppose (d) implies some non-redundant spine, i.e.,

Hn xA(i) < (1V) xlfl(l) v xflm(l)xgm(?) VERRY; H?:1 xfn(i)

1=1""1

with X\ # p,. Then for every injective function ¢ : N — N, there
exists s € N” and o € Nsuch thatd-s+ « € ¢[N]butd-s # [, s,
forall d € d.
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Suppose (d) implies some non-redundant spine, i.e.,

Hn xA(i) < (1V) xlfl(l) v xflm(l)xgm(?) VERRY; H?:1 xfn(i)

1=1""1

with X\ # p,. Then for every injective function ¢ : N — N, there
exists s € N” and o € Nsuch thatd-s+ « € ¢[N]butd-s # [, s,
for all d € d. l.e., our method cannot be extended for spines.
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Revisiting the definition of © cont.

Suppose (d) implies some non-redundant spine, i.e.,

H?:l x;‘(i) < (1v) :Ufl’l(l) v $T2(1)x52(2) VERRY; H?:1 xfn(z‘)

with X\ # p,. Then for every injective function ¢ : N — N, there
exists s € N" and o € Nsuch thatd-s+«a € ¢[N]butd-s # [, s,
for all d € d. l.e., our method cannot be extended for spines.

Theorem

Forany n € N, (d) € D iff there is no substitution o : Var — Var*
such that o(d) is equivalent to a non-redundant spine.
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Revisiting the definition of © cont.

Fact

Suppose (d) implies some non-redundant spine, i.e.,
H?:l x;‘(i) < (1\/) :Ufl’l(l) v $f132(1)xg2(2) VERRY; H?:1 xfn(z‘)

with X\ # p,. Then for every injective function ¢ : N — N, there
exists s € N" and o € Nsuch thatd-s+«a € ¢[N]butd-s # [, s,
for all d € d. l.e., our method cannot be extended for spines.

Theorem

Forany n € N, (d) € D iff there is no substitution o : Var — Var*
such that o(d) is equivalent to a non-redundant spine.

Open

What is the decidability of CRL with non-redundant spines? E.g.,
x<1Vz2
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Thank You!

g <o

Iiml!‘"

Gavin St.John
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