Goldblatt-Thomason for LE-logics

Apostolos Tzimoulis joint work with W. Conradie and A. Palmigiano

SYSMICS 2018 Orange, California

Goldblatt-Thomason theorem for modal logic

Theorem

Let \mathcal{L} be a modal signature and let K be a class of Kripke \mathcal{L} -frames that is closed under taking ultrapowers. Then K is \mathcal{L} -definable if and only if K is closed under p-morphic images, generated subframes and disjoint unions, and reflects ultrafilter extensions.

LE-logics

The logics algebraically captured by varieties of normal lattice expansions.

$$\phi ::= p \mid \bot \mid \top \mid \phi \land \phi \mid \phi \lor \phi \mid f(\overline{\phi}) \mid g(\overline{\phi})$$

where $p \in AtProp$, $f \in \mathcal{F}$, $g \in \mathcal{G}$.

Normality

- ▶ Every $f \in \mathcal{F}$ is finitely join-preserving in positive coordinates and finitely meet-reversing in negative coordinates.
- ▶ Every $g \in \mathcal{G}$ is finitely meet-preserving in positive coordinates and finitely join-reversing in negative coordinates.

Examples: substructural, Lambek, Lambek-Grishin, Orthologic...

Goldblatt-Thomason theorem for LE-logics

Theorem

Let \mathcal{L} be an LE signature and let K be a class of \mathcal{L} -frames that is closed under taking ultrapowers. Then K is \mathcal{L} -definable if and only if K is closed under p-morphic images, generated subframes and co-products, and reflects filter-ideal extensions.

LE frames

Definition

An \mathcal{L} -frame is a tuple $\mathbb{F}=(\mathbb{W},\mathcal{R}_{\mathcal{F}},\mathcal{R}_{\mathcal{G}})$ such that $\mathbb{W}=(W,U,N)$ is a polarity, $\mathcal{R}_{\mathcal{F}}=\{R_f\mid f\in\mathcal{F}\}$, and $\mathcal{R}_{\mathcal{G}}=\{R_g\mid g\in\mathcal{G}\}$ such that for each $f\in\mathcal{F}$ and $g\in\mathcal{G}$, the symbols R_f and R_g respectively denote (n_f+1) -ary and (n_g+1) -ary relations on \mathbb{W} ,

$$R_f \subseteq U \times W^{\epsilon_f}$$
 and $R_g \subseteq W \times U^{\epsilon_g}$, (1)

In addition, we assume that the following sets are Galois-stable (from now on abbreviated as *stable*) for all $w_0 \in W$, $u_0 \in U$, $\overline{w} \in W^{\epsilon_f}$, and $\overline{u} \in U^{\epsilon_g}$:

$$R_f^{(0)}[\overline{w}]$$
 and $R_f^{(i)}[u_0, \overline{w}^i]$ (2)

$$R_g^{(0)}[\overline{u}] \text{ and } R_g^{(i)}[w_0, \overline{u}^i]$$
 (3)

co-product for LE frames

Let
$$\mathcal{L} = \{\Box\}$$
, i.e. $R_{\Box} \subseteq W \times U$:

p-morphisms for LE logics

Definition

A *p-morphism* of \mathcal{L} -frames, $\mathbb{F}_1 = (\mathbb{W}_1, \mathcal{R}^1_{\mathcal{F}}, \mathcal{R}^1_{\mathcal{G}})$ and $\mathbb{F}_2 = (\mathbb{W}_2, \mathcal{R}^2_{\mathcal{F}}, \mathcal{R}^2_{\mathcal{G}})$, is a pair $(S, T) : \mathbb{F}_1 \to \mathbb{F}_2$ such that:

- p1. $S \subseteq W_1 \times U_2$ and $T \subseteq U_1 \times W_2$;
- p2. $S^{(0)}[u]$, $S^{(1)}[w]$, $T^{(0)}[w]$ and $T^{(1)}[u]$ are Galois stable sets;
- p3. $(T^{(0)}[w])^{\downarrow} \subseteq S^{(0)}[w^{\uparrow}]$ for every $w \in W_2$;
- p4. $T^{(0)}[(S^{(1)}[w])^{\downarrow}] \subseteq w^{\uparrow}$ for every $w \in W_1$;
- p5. $T^{(0)}[((R_f^2)^{(0)}[\overline{w}])^{\downarrow}] = (R_f^1)^{(0)}[((T^{\epsilon_f})^{(0)}[w])^{\partial}]$ for every $R_f^i \in \mathcal{R}_{\mathcal{F}}^i$, where $T^1 = T$ and $T^{\partial} = S$;
- p6. $S^{(0)}[((R_g^2)^{(0)}[\overline{u}])^{\uparrow}] = (R_g^1)^{(0)}[\overline{((S^{\epsilon_g})^{(0)}[u])^{\partial}}]$ for every $R_g^i \in \mathcal{R}_{\mathcal{G}}^i$, where $S^1 = S$ and $S^{\partial} = T$.

p-morphisms for LE logics

Definition

A *p-morphism* of \mathcal{L} -frames, $\mathbb{F}_1 = (\mathbb{W}_1, R^1_{\Diamond}, R^1_{\Box})$ and $\mathbb{F}_2 = (\mathbb{W}_2, R^2_{\Diamond}, R^2_{\Box})$, is a pair $(S, T) : \mathbb{F}_1 \to \mathbb{F}_2$ such that:

- p1. $S \subseteq W_1 \times U_2$ and $T \subseteq U_1 \times W_2$;
- p2. $S^{(0)}[u]$, $S^{(1)}[w]$, $T^{(0)}[w]$ and $T^{(1)}[u]$ are Galois stable sets;
- p3. $(T^{(0)}[w])^{\downarrow} \subseteq S^{(0)}[w^{\uparrow}]$ for every $w \in W_2$;
- p4. $T^{(0)}[(S^{(1)}[w])^{\downarrow}] \subseteq w^{\uparrow}$ for every $w \in W_1$;
- p5. $T^{(0)}[((R_{\diamond}^2)^{(0)}[w])^{\downarrow}] = (R_{\diamond}^1)^{(0)}[((T)^{(0)}[w])^{\downarrow}];$
- **p6**. $S^{(0)}[((R_{\square}^2)^{(0)}[u])^{\uparrow}] = (R_{\square}^1)^{(0)}[((S)^{(0)}[u])^{\uparrow}].$

Injective and surjective p-morphisms

Definition

For every p-morphism $(S, T) : \mathbb{F}_1 \to \mathbb{F}_2$,

- 1. $(S,T): \mathbb{F}_1 \to \mathbb{F}_2$, if $a \neq b$ implies $S^{(0)}[(a)] \neq S^{(0)}[(b)]$, for every $a,b \in (\mathbb{F}_2)^+$. In this case we say that \mathbb{F}_2 is a *p-morphic image* of \mathbb{F}_1 .
- 2. $(S,T): \mathbb{F}_1 \hookrightarrow \mathbb{F}_2$, if for every $a \in (\mathbb{F}_1)^+$ there exists $b \in (\mathbb{F}_2)^+$ such that $S^{(0)}[[b]] = [a]$. In this case we say that \mathbb{F}_1 is a *generated subframe* of \mathbb{F}_2 .

Example: generated subframe

 \mathbb{F}_2 is a generated subframe of \mathbb{F}_1 .

Example: p-morphic image

$$(\emptyset, \emptyset) = (S, T) : \mathbb{F}_1 \to \mathbb{F}_2.$$

 \mathbb{F}_2 is a p-morphic image of \mathbb{F}_1 .

(Counter)example

Filter-ideal extensions

Definition

The filter-ideal frame of an \mathcal{L} -algebra \mathbb{A} is $\mathbb{A}_{\star} = (\mathfrak{F}_{\mathbb{A}}, \mathfrak{I}_{\mathbb{A}}, N^{\star}, \mathcal{R}_{\mathcal{F}}^{\star}, \mathcal{R}_{\mathcal{G}}^{\star})$ defined as follows:

- 1. $\mathfrak{F}_{\mathbb{A}} = \{ F \subseteq \mathbb{A} \mid F \text{ is a filter} \};$
- 2. $\mathfrak{I}_{\mathbb{A}} = \{ I \subseteq \mathbb{A} \mid I \text{ is an ideal} \};$
- 3. FN^*I if and only if $F \cap I \neq \emptyset$;
- 4. for any $f \in \mathcal{F}$ and any $\overline{F} \in \overline{\mathfrak{F}}^{\epsilon_f}$, $R_f^{\star}(I, \overline{F})$ if and only $f(\overline{a}) \in I$ for some $\overline{a} \in \overline{F}$;
- 5. for any $g \in \mathcal{G}$ and any $\overline{I} \in \mathfrak{J}^{\epsilon_g}$, $R_g^{\star}(F, \overline{I})$ if and only if $g(\overline{a}) \in F$ for some $\overline{a} \in \overline{I}$.

Definition

Let $\mathbb F$ be an $\mathcal L$ -frame. The *filter-ideal extension* of $\mathbb F$ is the $\mathcal L$ -frame $(\mathbb F^+)_\star$.

Ultraproducts of LE-frames

- £-frames as (multi-sorted) first-order structures.
- ▶ Given a family $\{\mathbb{F}_i \mid j \in J\}$ of \mathcal{L} -frames and an ultrafilter \mathcal{U} over J, the ultraproduct $(\prod_{i \in I} \mathbb{F}_i)/\mathcal{U}$ is defined as usual.
- ▶ $(\prod_{i \in I} \mathbb{F}_i)/\mathcal{U}$ is an \mathcal{L} -frame, by Łos Theorem.
- Let \mathbb{F}^J/\mathcal{U} be the ultrapower of \mathbb{F} .

Enlargement property

Theorem (Enlargement property)

There exists a surjective p-morphism $(S,T): \mathbb{F}^J/\mathcal{U} \to (\mathbb{F}^+)_{\star}$ for some set J and some ultrafilter \mathcal{U} over J.

$$sSI \iff s^{-1}[\llbracket c \rrbracket] \in \mathcal{U} \text{ for some } c \in I$$
 (4)

$$tTF \iff t^{-1}[(c)] \in \mathcal{U} \text{ for some } c \in F.$$
 (5)

Goldblatt-Thomason theorem for LE-logics

Theorem

Let $\mathcal L$ be an LE signature and let K be a class of $\mathcal L$ -frames that is closed under taking ultrapowers. Then K is $\mathcal L$ -definable if and only if K is closed under p-morphic images, generated subframes and co-products, and reflects filter-ideal extensions.

Proof.

Let $\mathbb F$ be an $\mathcal L$ -frame validating the $\mathcal L$ -theory of K. By Birkhoff's Theorem:

$$\mathbb{F}^+ \twoheadleftarrow \mathbb{A} \hookrightarrow (\coprod_{i \in I} \mathbb{F}_i)^+.$$

This gives

$$(\mathbb{F}^+)_{\star} \hookrightarrow \mathbb{A}_{\star} \twoheadleftarrow ((\coprod_{i \in I} \mathbb{F}_i)^+)_{\star} \twoheadleftarrow (\coprod_{i \in I} \mathbb{F}_i)^J / \mathcal{U}.$$

Examples revisited: Difference

The first-order condition $R_{\square} = N^c$ is not \mathcal{L} -definable:

Examples revisited: Irreflexivity

The first-order condition $R^c \subseteq N$ is not \mathcal{L} -definable:

Examples revisited: Every point has a predecessor

The following first-order condition $\forall u \exists w (\neg wRu)$ is not \mathcal{L} -definable:

Thank you!