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Introduction

A commutative, integral residuated lattice, or CIRL, is a structure
A = (A, ·,→,∧,∨, 1) where:

(i) (A,∧,∨, 1) is a lattice with top element 1,

(ii) (A, ·, 1) is a commutative monoid,

(iii) (·,→) is a residuated pair, i.e. it holds for every x, y, z ∈ A:

x · z ≤ y iff z ≤ x→ y.

CIRLs constitute a variety, RL.

Examples: (Z−,+,	,min,max, 0), ideals of a commutative ring...
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Introduction

A bounded CIRL, or BCIRL, is a CIRL A = (A, ·,→,∧,∨, 0, 1) with an extra
constant 0 that is the least element of the lattice.

Examples: Boolean algebras, Heyting algebras...

In every BCIRL we can define further operations and abbreviations:

¬x = x→ 0, x+ y = ¬(¬x · ¬y), x2 = x · x.

Totally ordered structures are called chains.

A CIRL, or BCIRL, is semilinear (or prelinear, or representable) if it is a
subdirect product of chains.

We call semilinear CIRLs GMTL-algebras and semilinear BCIRLs MTL-algebras.
They constitute varieties that we denote with GMTL and MTL.

MTL-algebras are the semantics of Esteva and Godo’s MTL, the fuzzy logic of
left-continuous t-norms.
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Introduction

BL-algebras (semantics of Hàjek Basic Logic) are MTL-algebras satisfying
divisibility: x ∧ y = x · (x→ y).

0-free reducts of BL-algebras (divisible GMTL-algebras) are known as basic
hoops.

MV-algebras (semantics of  Lukasiewicz logic) are involutive BL-algebras, i.e.
they satisfy ¬¬x = x.

0-free reducts of MV-algebras are called Wajsberg hoops.
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Introduction

Aglianò and Montagna in 2003, prove the following powerful characterization:

Theorem
Every totally ordered basic hoop (or BL algebra) is the ordinal sum of a family of
Wajsberg hoops (whose first component is bounded).

Using the characterization in ordinal sums, Aglianò has been recently able to
describe the splitting algebras in the variety of BL-algebras, and in relevant
subvarieties, also providing the splitting equation.

Theorem
A BL-algebra is splitting in the lattice of subvarieties of BL if and only if it is a
finite ordinal sum of Wajsberg hoops whose last component is isomorphic with
the two elements Boolean algebra 2.

Sara Ugolini 5/33
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Introduction

If L is any lattice a pair (a, b) of elements of L is a splitting pair if L is equal to
the disjoint union of the ideal generated by a and the filter generated by b.

If V is any variety, we say that an algebra A ∈ V is splitting in V if V(A) is the
right member of a splitting pair in the lattice of subvarieties of V.

Equivalently: A is splitting in V if there is a subvariety WA ⊆ V (the conjugate
variety of A) such that for any variety U ⊆ V either U ⊆ WA or A ∈ U.
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Introduction

Some facts:

1 if A is splitting in V then WV
A is axiomatized by a a single equation;

2 if A is splitting in V then V(A) is generated by a finitely generated
subdirectly irreducible algebra;

3 if A is splitting in V then it is splitting in any subvariety of V to which it
belongs.

4 If V is congruence distributive and generated by its finite members (FMP),
then every splitting algebra in V is finite and uniquely determined by the
splitting pair.
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Introduction

Theorem (Jankov, 1963)
Every finite subdirectly irreducible Heyting algebra is splitting in the variety of
Heyting algebras.

Theorem (Kowalski-Ono, 2000)
The two-element Boolean algebra 2 is the only splitting algebra in the lattice of
subvarieties of BCIRLs.
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Introduction

MTL

Montagna, Noguera and Horč̀ık in 2006 prove that also MTL-chains allow a
maximal decomposition in terms of ordinal sums of GMTL-algebras.

However, it is not currently known how to characterize GMTL-algebras, or
MTL-algebras, that are sum-irreducible (any involutive MTL-algebra is sum
irreducible).

Via the generalized rotation construction (Busaniche, Marcos and U., 2018), we
will use results from the theory of basic hoops to shed light on the hard problem
of understanding splitting algebras in some wide classes of MTL-algebras.
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Introduction

Generalized rotation

Let R = (R, ·,→,∧,∨, 1) be a RL, δ operator and n ∈ N, n ≥ 2. We define the
generalized rotation with domain:

Rδ
n(R) = ({0} × δ[D]) ∪ {{s} × {1}}

s∈ Ln\{0,1} ∪ ({1} ×D) :

Let δ : R→ R be a nucleus operator:
i.e. a closure operator such that

δ(x) · δ(y) ≤ δ(x · y),

that also respects the lattice operations.

Examples: id, 1̄ (1̄(x) = 1, for every x ∈ R).
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Introduction

Generalized rotation

Let R = (R, ·,→,∧,∨, 1) be a RL, δ wdl-admissible and n ∈ N, n ≥ 2. We
define the generalized rotation Rδ

n(R):

We can see the domain of Rδ
n(R) as:

({1}×R) ∪ {{s}×{1}}
s∈ Ln\{0,1} ∪ ({0}×δ[R])

With suitably defined operations, Rδ
n(R) is a directly

indecomposable bounded RL (Busaniche, Marcos, U.
2018).
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Introduction

With δ = 1̄, R1̄
n(R) is the n-lifting of R:

Stonean residuated lattices (SMTL-algebras, Gödel algebras, product algebras),
BLn-algebras...

With δ = id, Rid
n (R) is the disconnected n-rotation of R:

Disconnected rotations (perfect MV-algebras, NM−...), connected rotations
(nilpotent minimum NM, regular Nelson lattices)
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n = 2: srDL-algebras

(Cignoli and Torrens 2006, Aguzzoli, Flaminio
and U. 2017): Generalized rotation with n = 2
generate srDL-algebras: MTL-algebras that
satisfy:

(DL) (2x)2 = 2x2

(r) ¬(x2)→ (¬¬x→ x) = 1

(Aguzzoli, Flaminio, U., 2017) srDL-algebras
are equivalent to categories whose objects are
quadruples (B,R,∨e, δ):

• B is a Boolean algebra,

• R is a GMTL-algebra,

• a δ operator,

• ∨e : B ×R→ R is an external join
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Introduction

Dualized construction

Let A be an srDL-algebra, and u, v, w... be the ultrafilters of its Boolean
skeleton.
Aaa
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Introduction

Dualized construction

Below u: the prime lattice filters of the radical that respect an “external
primality condition” wrt u, ordered by inclusion.
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Introduction

Dualized construction

Same for v, w, . . .
Aaa
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Introduction

Dualized construction

Rotate upwards the δ-images of the elements below u.
Aaa
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Introduction

Dualized construction

The dualized rotation construction obtained is isomorphic to the poset of prime
lattice filters of A (Fussner, Ugolini 2018).
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Introduction

n ≥ 2: MVRn-algebras

MVRn-algebras constitute a variety and have
an MV-retraction term (thus, an MV-skeleton)
and are equivalent to categories whose objects
are quadruples (M,R,∨e, δ) where M is an
MVn-algebra.

Via these categorical characterization, we
prove that the full subcategories of
MVRn-algebras generated by, respectively,
n-liftings and generalized disconnected
rotations are categorically equivalent.
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BRL

B

MTL

MVRn

HArDL

srDLIMTL

sIDL NR−
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Introduction

Let us consider a δ-operator that is term-defined (briefly, td-rotation), i.e. δ(x)
is a unary term (e.g. δ(x) = x and δ(x) = 1).

Let K be any class of GMTL-algebras and let δ be a td-rotation; for A in K we
denote by Aδn its generalized n-rotation and we define

Kδn = {Aδm : m− 1 | n− 1,A ∈ K}.

From now on we will write δ for δ2.

Lemma
Let K and δ as above; then

1 HHH(K)δn = HHH(Kδn);

2 SSS(K)δn = SSS(Kδn);

3 PPPu(K)δn ⊆ IIISSSPPPu(Kδn);

4 PPPu(Kδ) ⊆ IIISSS(PPPu(K)δ).
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Introduction

Corollary
Let K be a class of GMTL-algebras and δ a td-rotation; then A ∈HHHSSSPPPu(K) if
and only if Aδ ∈HHHSSSPPPu(Kδ). Moreover for any n ≥ 2, A ∈HHHSSSPPPu(K) implies
Aδn ∈HHHSSSPPPu(Kδn).

Corollary
Let K be a variety of GMTL-algebras and δ a td-rotation; then the mapping

V 7−→ Vδ

is an isomorphism between the lattice of subvarieties of K and the lattice of
subvarieties of Kδ, where the inverse is

W 7−→ WR = VVV (R(A) : A ∈ W).

Sara Ugolini 22/33



Introduction

Lemma
Given V a variety of GMTL-algebras, A is directly indecomposable in Vδn iff the
radical R(A) ∈ V and the MV -skeleton M (A) ∼=  Lm for m ∈ N such that
m− 1 | n− 1.

Proposition
Given V,W varieties of GMTL-algebras, Vδm ⊆ Wδn iff m− 1 | n− 1 and
V ⊆ W.
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Introduction

Theorem
For any variety V of GMTL-algebras an algebra A is splitting in V if and only if
Aδ is splitting in Vδ if and only if Aδ is splitting in Vδn .

There is more: e.g., since VVV ( L2) is the only atom in any Vδn , it is splitting with
conjugate variety the trivial variety. Moreover:

Lemma
Suppose V is a variety of GMTL-algebras and suppose that n is such that n− 1
is a prime power;  Ln is splitting in Vδn .

Lemma
Let V be a variety of GMTL-algebras that is completely join irreducible in the
lattice of subvarieties of V and let A such that VVV (A) = V. Then Aδm is splitting
in Vδn for any m such that m− 1 | n− 1.

Problem: finding splittings in GMTL is not easier than finding them in MTL.
Thus we are going to use our construction to transfer results from BH to MTL.
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Figure: The lattice of subvarieties of BH
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Introduction

Disconnected n-rotations of basic hoops

The n-liftings of basic hoops are BL-algebras, so we are interested in the
disconnected n-rotations.

In general the variety BHδn of involutive MTL-algebras generated by all the
n-rotations of basic hoops can be axiomatized by

(∇n(x) ∧∇n(y))→ ((x(x→ y))→ (y(y → x))) ≈ 1.

The k-rotations of splitting algebras in BH, whenever k − 1 | n− 1, are splitting
algebras in BHδn.

If A is splitting in BH with splitting equation τ(x1, . . . , xk) ≈ 1 then the
splitting equation of Aδ2 in BHδn is

k∧
i=1

∇2(xi)→ τ(x1, . . . , xk) ≈ 1.
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Introduction

Disconnected n-rotations of basic hoops

Cancellative hoops

Proposition
Given a GMTL-algebra R, its disconnected n-rotation is a BL-algebra if and only
if n = 2 and R is a cancellative hoop.

We will refer to the varieties Cδn for n ≥ 2 as nilpotent product varieties.
Since cancellative hoops are axiomatized relative to Wajsberg hoop by
(x→ x2)→ x ≈ 1 the variety Cδn are axiomatized by

¬xn → ((x→ x2)→ x) ≈ 1.

Lemma
Cδn = VVV (Cδnω ).

Thus e.g. the lattice of subvarieties of Cδ3 is the three element chain where the
only proper nontrivial subvariety is Cδ2 , Chang MV-algebra.
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Introduction

Disconnected n-rotations of basic hoops

Wajsberg hoops

The variety BHδn generated by all the n-rotations of Wajsberg hoops can be
axiomatized by

(∇n(x) ∧∇n(y))→ (((x→ y)→ y)→ ((y → x)→ x)) ≈ 1.

The only splitting algebras in WH are Cω and  L2, while proper subvarieties of
WH are all generated by finitely many finite chains [Agliano, Panti 1999], so
their lattice of subvarieties is finite.

Thus the splitting algebras in a proper subvariety V of WH are exactly the totally
ordered ones that generate a proper variety that is join irreducible in the lattice
of subvarieties of V.

We will refer to the varieties Vδn for n ≥ 2 as nilpotent  Lukasiewicz varieties.

Any proper variety of Wajsberg hoops is axiomatized (modulo basic hoops) by a
single equation in one variable of the form tV(x) ≈ 1. Thus Vδn is axiomatized
by ¬xn ∨ tV(x) ≈ 1.

Sara Ugolini 28/33
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Let us consider VVV ( Lδ33 ).The splitting algebras are  L2,  Lδ22 ,  L3 and  Lδ23 .
For greater n we get more complex lattices of subvarieties and more splitting
algebras.
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Disconnected n-rotations of basic hoops
Gödel hoops
Let Gn be the Gödel chain with n-elements; then (Aglianò 2017) each Gn is
splitting in GH with splitting equation

∧n−1
i=0 ((xi+1 → xi)→ xi ≤

∨n
i=0 xi.

We can axiomatize NM = GHδ3 relatively to involutive MTL-algebras as

¬x2 ∨ (x2 → x) ≈ 1.

Similarly, GHδ4 is axiomatized relatively to involutive MTL-algebras by

¬x3 ∨ (x→ x2) ≈ 1

and the splitting algebras in NM4 are exactly Gδl for l ≥ 2.

The lattice of subvarieties of NM4 is identical to the lattice of subvarieties of NM
(3− 1 and 4− 1 have the same number of divisors and they are all relatively
prime).

The case n = 5 is similar but harder, however the lattice of subvarieties should
still be understandable as a “higher dimensional” version of the one of
NM-varieties (ongoing work).
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Amalgamation

Let K be a class of algebras of the same type. We say that K has the
amalgamation property (AP for short) iff whenever A,B,C are in K, and i and j
are monomorphisms from A into B and from A into C respectively, there are
D ∈ K and monomorphisms h and k from B into D and from C into D such
that the compositions h ◦ i and k ◦ j coincide. In this case, (D, h, k) is said to
be an amalgam of (A,B,C, i, j).

A D

B

C

i

j

h

k

Metcalfe, Montagna and Tsinakis show that a variety V of semilinear (not
necessarily commutative and integral) residuated lattices satisfying the
congruence extension property has the AP iff the class of chains in V has AP.
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Theorem
A variety V of GMTL-algebras has the AP iff Vδn has the AP.

Since (Montagna 2006) the varieties of basic hoops BH, Wajsberg hoops WH,
cancellative hoops CH and Gödel hoops GH have the AP, each one of BHδn ,
WHδn , CHδn and GHδn has AP, thus in particular:

• the variety generated by perfect MV -algebras (Di Nola, Lettieri 1994) and
all nilpotent product varieties;

• NM and NM− (Bianchi 2001), and all nilpotent minimum varieties;

• all nilpotent  Lukasiewicz varieties.
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Thank you.
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