The structure of idempotent involutive residuated lattices and weakening relation algebras

Nick Galatos, Peter Jipsen, Olim Tuyt, Diego Valota

University of Denver, Colorado
Chapman University, California
University of Bern, Switzerland
University of Milan, Italy

January 15, 2020

Joint AMS-MAA Mathematics Meeting, Denver
Overview

Part I, with O. Tuyt and D. Valota

- Commutative idempotent involutive residuated lattices
- Gluing construction
- Ungluing decomposition

Part II, with N. Galatos

- \mathbf{FL}_2-algebras and their congruences
- Weakening relation algebras
- Double-division conuclei
Involutive residuated lattices

Definition

A **pointed residuated lattice** $A = \langle A, \land, \lor, \cdot, \backslash, /, 1, 0 \rangle$ is

- a lattice $\langle A, \land, \lor \rangle$ and a monoid $\langle A, \cdot, 1 \rangle$ such that

 $$x \cdot y \leq z \iff x \leq z/y \iff y \leq x\backslash z$$

 for all $x, y, z \in A$.

A is **involutive** if $\sim -x = x = -\sim x$, where $\sim x = x\backslash 0$ and $-x = 0/x$.

\backslash, / can be term-defined via $x\backslash y = \sim (-y \cdot x)$ and $x/y = -(y \cdot \sim x)$.

- A is **commutative** if $x \cdot y = y \cdot x$ (hence $-x = \sim x$)
- A is **idempotent** if $x \cdot x = x$ for all $x \in A$

$CldInRL$ denotes the variety of **commutative idempotent involutive residuated lattices**.
Examples of ClIdINRLs

Let $A \in \text{ClIdInRL}$.

- $\langle A, \cdot, 1 \rangle$ is a meet-semilattice with top element 1 and order \sqsubseteq (monoidal order) defined as

 $$a \sqsubseteq b \iff a \cdot b = a.$$

Hence, the orders \leq and \sqsubseteq together with the involution \neg completely determine A, allowing us to work in the signature $\langle A, \lor, \cdot, \neg, 0, 1 \rangle$

- **Boolean algebras** (where $\leq = \sqsubseteq$)

- **Sugihara monoids** defined as distributive ClIdInRLs (=$\text{algebraic semantics for relevance logic RM}^t$)

 Dunn [1970] proved that the subdirectly irreducible Sugihara monoids are linearly ordered. Up to isomorphism, there is one such algebra S_n for each chain with n elements.
Another example

\[\langle A, \leq \rangle \]

\[\langle A, \sqsubseteq \rangle \]
Another example

\[\langle A, \leq \rangle \]

\[\langle A, \sqsubseteq \rangle \]
Another example

\[\langle A, \leq \rangle \]

\[\langle A, \sqsubseteq \rangle \]
Some properties

For each $x \in A$, let

- $0_x := x \land -x = x \cdot -x$
- $1_x := x \lor -x = -(x \cdot -x) = x/x$
- $\mathbb{B}_x := \{y \in A \mid 0_x \sqsubseteq y \sqsubseteq 1_x\}$
- $\downarrow 0 := \{y \in A \mid y \leq 0\} = \{0_x \mid x \in A\}$

Lemma

- For each $x \in A$, $\langle \mathbb{B}_x, \land, \lor, -, 0_x, 1_x \rangle$ is a **Boolean algebra**
- For each $x \in A$, the monoidal order and the lattice order agree on \mathbb{B}_x
- The monoidal intervals \mathbb{B}_x **partition** A
- $\langle \downarrow 0, \cdot, \lor \rangle$ is a **distributive lattice** with top element 0

Hence, the monoidal semilattice is a disjoint union of Boolean algebras over the ‘skeleton’ of a distributive lattice.
Construction: example of $\mathbf{C} = \mathbf{A} \oplus \phi \mathbf{B}$
Construction: formally

Let $\uparrow a = \{ x \in A \mid a \subseteq x \}$ and $\downarrow b = \{ x \in B \mid x \subseteq b \}$.

$A = \langle A, \lor^A, \cdot^A, \land^A, 0^A, 1^A \rangle$ (the bottom algebra) and $B = \langle B, \lor^B, \cdot^B, \land^B, 0^B, 1^B \rangle$ (the top algebra) are φ-compatible if

- φ is a bijection $\uparrow a \to \downarrow b$ for some $a \leq 1^A$ and $0^B \leq b \leq 1^B$ such that
- φ preserves join, i.e. $\varphi(x \lor^A y) = \varphi(x) \lor^B \varphi(y)$
- φ preserves fusion, i.e. $\varphi(x \cdot^A y) = \varphi(x) \cdot^B \varphi(y)$ and
- $0^B = \varphi(a \lor^A 0^A)$.

For φ-compatible algebras we define a glueing construction $\oplus \varphi$.

Galatos, Jipsen, Tuyt, Valota
Structure of CldInRLs and WkRAs
January 15, 2020
8 / 25
Glueing construction

\[A \oplus_\varphi B := \langle A \cup B, \lor, \cdot, -, 1^B, 0^B \rangle \]

\[
x \lor y = \begin{cases}
x \lor^A y & \text{if } x, y \in A \\
x \lor^B y & \text{if } x, y \in B \\
\varphi(x \lor^A a) \lor^B y & \text{if } x \in A, y \in B, x \leq^A -^A a \\
x \lor^A \varphi^{-1}(y \cdot^B b) & \text{if } x \in A, y \in B, x \not\leq^A -^A a
\end{cases}
\]

\[
x \cdot y = \begin{cases}
x \cdot^A y & \text{if } x, y \in A \\
x \cdot^B y & \text{if } x, y \in B \\
x \cdot^A \varphi^{-1}(y \cdot^B b) & \text{if } x \in A, y \in B
\end{cases}
\]

\[
-x = \begin{cases}
-A x & \text{if } x \in A \\
-B x & \text{if } x \in B
\end{cases}
\]
Theorem

For \(\varphi \)-compatible \(A, B \in \text{CldInRL} \) the algebra \(A \oplus_\varphi B \) is in \(\text{CldInRL} \).

The proof is by case analysis and direct computation.
For finite $C \in \text{CIdInRL}$, consider a co-atom c in the underlying distributive lattice with universe $\downarrow 0 = \{0_x \mid x \in C\}$.

By distributivity, there exists c^* such that $\langle c, c^* \rangle$ is a splitting pair of $\downarrow 0$.

Note: $c = 0_c$, hence $-c = 1_c$.

Lemma

The pair $\langle 1_c, c^* \rangle$ is a splitting pair of (C, \sqsubseteq).

Moreover, $\uparrow c^*$ is a subuniverse of C, and $\downarrow 1_c$ is closed under $\lor, \cdot, -$.
Let $A = \langle \bot 1_c, \lor, \cdot, -, 1_c, 0_c \rangle$.

Let B be the subalgebra of C with subuniverse $\uparrow c^*$.

Choose $a = 1_c \cdot c^*$ and $b = (1_c \lor -a) \lor c^*$, and define

$\varphi(x) = (x \land -a) \lor c^*$ for $a \sqsubseteq x \sqsubseteq 1_c$.

Lemma

- $a \leq 1_c$ and $0 \leq b \leq 1$
- φ is a bijection to $\{ y \mid c^* \sqsubseteq y \sqsubseteq b \}$ with $\varphi^{-1}(y) = y \cdot 1_c$
- $\varphi(c \lor a) = 0_b$

Theorem

The algebra $C \in \text{CldInRL}$ is isomorphic to $A \oplus \varphi B$.
The discovery of the previous theorem and the results below were guided by Prover9/Mace4 computations of all ClldInRLs with \(\leq 16 \) elements.

Theorem

Any finite member \(A \) of ClldInRL can be constructed using the gluing construction, starting from finite Boolean algebras.

Corollary

Any finite \(A \in ClldInRL \) is determined by its fusion semilattice and also by its lattice reduct.

To do: Implement an algorithm for constructing all finite ClldInRLs.
As an application, call an \(A \in \text{CIdInRL} \) fusion-distributive if the meet-semilattice \(\langle A, \cdot \rangle \) is distributive, i.e. if for all \(x, y, z \in A \),

\[
x \cdot y \sqsubseteq z \implies \exists x', y' \in A \text{ such that } x \sqsubseteq x', y \sqsubseteq y', \text{ and } z = x' \cdot y'.
\]

Lemma

For compatible fusion-distributive \(A, B \in \text{CIdInRL} \), their gluing \(C \) is fusion-distributive.

Corollary

- Any finite \(A \in \text{CIdInRL} \) is fusion-distributive.
- Every finite distributive lattice can occur as skeleton.
A one-generated infinite CIdInRL
A one-generated infinite ClfInRL
A one-generated infinite CI\dlnRL
A one-generated infinite ClIdlnRL
A one-generated infinite CIdInRL
A one-generated infinite CIdInRL
A one-generated infinite CIdInRL
A one-generated infinite ClDInRL
A one-generated infinite CIdInRL
A one-generated infinite ClDInRL

\[x \wedge 1 \]

\[1 \lor \neg x \]

\[\neg x \]
A one-generated infinite CIdInRL
A one-generated infinite CIdInRL
The fusion semilattice of a one-generated infinite CIdInRL
The fusion semilattice of a one-generated infinite CldInRL
The fusion semilattice of a one-generated infinite CIdInRL
The fusion semilattice of a one-generated infinite CldInRL
The fusion semilattice of a one-generated infinite CldInRL
A **FL**\(^2\)-**algebra** is of the form \(A = (A, \land, \lor, \Diamond, \rightarrow, \leftarrow, t, f, \cdot, \backslash, /, 1, 0)\) s.t.

\[A_t = (A, \land, \lor, \Diamond, \rightarrow, \leftarrow, t, f) \quad \text{and} \quad A_1 = (A, \land, \lor, \cdot, \backslash, /, 1, 0) \]

are pointed residuated lattices.

Relation algebras are examples of **classical** FL\(^2\)-algebras: \(A_t\) is a Boolean algebra with \(x \land y = x \Diamond y\).

A **bounded generalized bunched implication algebra** (bGBI-algebra) is a FL\(^2\)-algebra that satisfies \(x \land y = x \Diamond y\), \(t = \top\), \(f = \bot\) and \(0 = 1\).

A **bunched implication algebra**, or **BI-algebra**, is a commutative bGBI-algebra (i.e., \(xy = yx\)).
A **congruence filter** of a residuated lattice A is a subset of the form $F = \uparrow([1]_\theta)$ where θ is a congruence.

Congruence filters satisfy the following **normality condition** for $a \in A$ (where quantifiers range over F):

$$\forall x \in F \exists x_1, x_2 \in F, \hspace{1em} x_1 a \leq ax \hspace{1em} \text{and} \hspace{1em} ax_2 \leq xa.$$ \hspace{1em} (N_a)

A filter F satisfies (N) if (N_a) holds for all $a \in A$.

The set of **congruence filters** of A is denoted by $\text{CF}(A)$.

Theorem (Blount-Tsinakis 2003)

For a residuated lattice A, a subset F is a congruence-filter if and only if F is a lattice filter and a submonoid of A that satisfies (N).

Moreover, $\text{Con}(A)$ is isomorphic to the lattice $\text{CF}(A)$ of congruence-filters via the bijection $\theta \mapsto \uparrow([1]_\theta)$ and $F \mapsto \{(x, y) : x/y, y/x \in F\}$.
Congruences of FL^2-algebras

For FL^2 the congruence 1-filters are determined by a stronger t-normality condition. For any $a \in A$

$$
\forall x \in F, \exists x_1, x_2, x_3, x_4 \in F, \ \
ax_1 \leq a \diamond xt, \ \ x_2 a \leq xt \diamond a, \ \ a \diamond x_3 t \leq xa, \ \ x_4 t \diamond a \leq ax
$$

$$(N_a^t)$$

A filter F satisfies (N_t^t) if (N_a^t) holds for all $a \in A$.

Theorem

For an FL^2-algebra A, a subset F is the 1-filter of some congruence θ of A if and only if F is a lattice filter and $\cdot, 1$-submonoid of A that satisfies (N_t^t)

An analogous result holds for congruence t-filters $\uparrow([t]_\theta$ of FL^2-algebras.*
Congruences of GBI-algebras

The previous result specializes to generalized bunched implication algebras:

Corollary

The 1-filters of a GBI-algebra A are the filter submonoids that are closed under the terms

$$u_a(x) = a \backslash (a \land x \top), \quad v_a(x) = (a \to xa) / \top \quad \text{and} \quad \rho_a(x) = ax / a,$$

A previously known characterization of the congruence classes of GBI-algebras used more complicated terms with two parameters.

Similar 1-parameter terms exist for congruence \top-filters of GBI-algebra.

Theorem

For an involutive GBI-algebra, a lattice filter F is a \top-filter if and only if for all $x \in F$ it follows that $\neg \neg x$, $\neg \neg x$, $\sim (\top (\neg x) \top) \in F$.
Weakening relation algebras

For a poset $P = (P, \leq)$, let $Wk(P) = \{ R \subseteq P^2 : \leq; R; \leq \subseteq R \}$. Relations in $Wk(P)$ are called **weakening closed relations** since

$$x \leq u \ R \ v \leq y \implies x \ R \ y$$

$\sim R := (R^c)^\frown = \{(y, x) \mid (x, y) \notin R\}$, the **complement-converse** of R.

Weakening relations are closed under **complement-converse**, **union**, **intersection**, **Heyting implication** \rightarrow (=$\text{residual of intersection}$), **relation composition** $;$ and **residuals** $\setminus, / \text{ of composition}$.

$1 := \leq$ is a weakening relation and is the identity of composition.

The **full weakening relation algebra** on a poset P is

$$Wk(P) = (Wk(P), \cap, \cup, \rightarrow, P^2, \emptyset, ;, \sim, 1, 0), \text{ where } 0 = \sim 1.$$

Representable weakening relation algebras $= V\{Wk(P) \mid P \text{ is a poset}\}$.
Double division conuclei

An **interior operator** δ on a poset is an order-preserving map such that $\delta(\delta(x)) = \delta(x) \leq x$.

An interior operator δ is a **conucleus** if $\delta(x)\delta(y) \leq \delta(xy)$.

The conucleus **image** $\delta(A)$ of a residuated lattice is a residuated lattice $(\delta(A), \land, \lor, \cdot, \backslash_\delta, /_\delta)$ without 1, where $x *_\delta y = \delta(x * y)$ for $* \in \{\land, \backslash, /\}$.

Let $p \in A$ be a **positive idempotent**, i.e., $p = p^2 \geq 1$.

Then $\delta_p(x) = p\backslash x/p$ is a conucleus called the **double division conucleus**.

Lemma

$\delta_p(A) = \{pxp \mid x \in A\}$, and p is the identity element.
Double division conuclei of relation algebras

In a full relation algebra, a positive idempotent p is a **preorder** $P = (P, \sqsubseteq)$ (i.e., $p = \sqsubseteq$ is reflexive and transitive).

If $p \wedge p^\sim = 1$ then P is a poset and $Wk(P) = \delta_p(\text{Rel}(P))$.

Hence the variety RWkRA of representable weakening relation algebras contains all double division conucleus images of members of RRA.

For a class \mathcal{K} of algebras let $d\mathcal{K} = \{\delta_p(A) : A \in \mathcal{K}, 1 \leq p^2 = p \in A\}$.

Theorem

If \mathcal{V} is a variety of bounded GBI-algebras with $\top \setminus x/\top$ as unary discriminator on the subdirectly irreducible members then $S(d\mathcal{V})$ is a discriminator variety with the same unary discriminator term.

Applying this result to the variety RA produces the discriminator variety $S(dRA)$ that contains both RA and RWkRA.
Some identities that hold in $S(\text{dRA})$

Recall that the variety RA of relation algebras is an abstract counterpart of the variety RRA of representable relation algebras.

The variety $S(\text{dRA})$ generated by double-division conucleus images of relation algebras is the abstract counterpart of RWkRA.

Open problem: Find a (finite?) axiomatization of $S(\text{dRA})$.

In a GBI-algebra let the **domain** $d(x) = x \top \land 1$ and **range** $r(x) = \top x \land 1$.

Theorem

The identities

\[
d(x)x = x, \quad xr(x) = x, \quad T x T x T = T x T \quad \text{and} \quad \sim \neg(xy) \leq (\sim \neg y)(\sim \neg x)
\]

hold in $S(\text{dRA})$.

Thank you!