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Introduction

Alfred Tarski defined (abstract) relation algebras (RAs) in 1941.

When is a RA representable as an algebra of binary relations?

Donald Monk (1964): the variety of representable RAs is not
axiomatized by finitely many formulas.

Robin Hirsch and Ian Hodkinson (2001): it is undecidable whether
a finite relation algebra is representable.

Roger Maddux (1983): n-dimensional bases to prove
nonrepresentability.

Steve Comer (∼1980): one-point extension method to prove
representability for some small RAs.

Finding and checking these proofs by hand is laborious but could
now be done with the help of proof assistants.
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Relation algebra in proof assistants

Rocq: Damien Pous, Relation Algebra and KAT in Coq, 2012,
https://perso.ens-lyon.fr/damien.pous/ra/

Isabelle: A Armstrong, S Foster, G Struth, T Weber, 2014,
Archive of Formal Proofs, Relation Algebra
https://www.isa-afp.org/entries/Relation_Algebra.html
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Brief background on proof assistants

Automated theorem provers have been developed since the 1960s,
see McCune and Wos [1997] for a brief history.

Mostly restricted to first-order logic: Otter, Prover9/Mace4,
SPASS, E-prover, Vampire, ...

Satisfiability Modulo Theories (SMT) solvers: Z3, CVC5, ...

Interactive theorem provers: Mizar, PVS, HOL, HOL-light, Isabelle,
Rocq, Agda, Lean, ...

Based on higher-order logics, (dependent) type theories, large
libraries of formal proofs
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Definition of relation algebra

A relation algebra A = ⟨A,⊔,c , ; , 1
,
, −1⟩ is a

1 Boolean algebra ⟨A,⊔,c ⟩ with operations ; , 1
,
, −1 that satisfy

2 assoc: ∀xyz , (x ; y) ; z = x ; (y ; z)

3 rdist: ∀xyz , (x ⊔ y) ; z = x ; z ⊔ y ; z

4 comp_one: ∀x , x ; 1 = x

5 conv_conv: ∀x , x−1−1 = x

6 conv_dist: ∀xy , (x ⊔ y)−1 = x−1 ⊔ y−1

7 conv_comp: ∀xy , (x ; y)−1 = y−1 ; x−1

8 schroeder: ∀xy , x−1 ; (x ; y)c ≤ y c
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A Lean class for relation algebras

class RelationAlgebra (A : Type u) extends
BooleanAlgebra A, Comp A, One A, Inv A where
assoc : ∀ x y z : A, (x ; y) ; z = x ; (y ; z)
rdist : ∀ x y z : A, (x ⊔ y) ; z = x ; z ⊔ y ; z
comp_one : ∀ x : A, x ; 1 = x
conv_conv : ∀ x : A, x−1−1 = x
conv_dist : ∀ x y : A, (x ⊔ y)−1 = x−1 ⊔ y−1

conv_comp : ∀ x y : A, (x ; y)−1 = y−1 ; x−1

schroeder : ∀ x y : A, x−1 ; (x ; y)c ≤ yc

This definition is based on Lean’s mathlib4
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Properties of relation algebra

Relation algebras satisfy the Peircean law:

x ;y ⊓ z = ⊥ ⇔ z ;y−1 ⊓ x = ⊥ ⇔ x−1;z ⊓ y = ⊥

z

x y ⇔
x

z y ⇔
y

x z
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lemma top_conv : (⊤ : A)−1 = ⊤ := by
have : (⊤ : A)−1 = (⊤ ⊔ ⊤−1)−1 := by simp
have : (⊤ : A)−1 = ⊤−1 ⊔ ⊤ := by rw [conv_dist,
conv_conv] at this; exact this

have : (⊤ : A) ≤ ⊤−1 := by rw [left_eq_sup] at this;
exact this

exact top_unique this

lemma ldist (x y z : A) : x ; (y ⊔ z) = x ; y ⊔ x ; z :=
by

calc
x ; (y ⊔ z) = (x ; (y ⊔ z))−1−1 := by rw [conv_conv]
_ = ((y ⊔ z)−1 ; x−1)−1 := by rw [conv_comp]
_ = ((y−1 ⊔ z−1) ; x−1)−1 := by rw [conv_dist]
_ = (y−1 ; x−1 ⊔ z−1 ; x−1)−1 := by rw [rdist]
_ = ((x ; y)−1 ⊔ (x ; z)−1)−1 := by rw [←conv_comp,
←conv_comp]
_ = (x ; y) ⊔ (x ; z) := by rw [←conv_dist,
conv_conv]
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lemma comp_le_comp_right (z : A) {x y : A} (h : x ≤ y) :
x ; z ≤ y ; z := by

calc
x ; z ≤ x ; z ⊔ y ; z := by simp
_ = (x ⊔ y) ; z := by rw [←rdist]
_ = y ; z := by simp [h]

lemma comp_le_comp_left (z : A) {x y : A} (h : x ≤ y) : z
; x ≤ z ; y := by

calc
z ; x ≤ z ; x ⊔ z ; y := by simp
_ = z ; (x ⊔ y) := by rw [←ldist]
_ = z ; y := by simp [h]

lemma conv_le_conv {x y : A} (h : x ≤ y) : x−1 ≤ y−1 :=
by

calc
x−1 ≤ x−1 ⊔ y−1 := by simp
_ = (x ⊔ y)−1 := by rw [←conv_dist]
_ = y−1 := by simp [h]
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lemma conv_compl_le_compl_conv (x : A) : x−1c ≤ xc−1 := by
have : x ⊔ xc = ⊤ := by simp
have : (x ⊔ xc)−1 = ⊤−1 := by simp
have : x−1 ⊔ xc−1 = ⊤ := by rw [conv_dist, top_conv]
at this; exact this

rw[join_eq_top_iff_compl_le] at this; exact this

lemma conv_compl_eq_compl_conv (x : A) : xc−1 = x−1c := by
have : x−1−1c ≤ x−1c−1 := conv_compl_le_compl_conv x−1

have : xc ≤ x−1c−1 := by rw [conv_conv] at this; exact
this

have : xc−1 ≤ x−1c−1−1 := conv_le_conv this
rw [conv_conv] at this; exact le_antisymm this
(conv_compl_le_compl_conv x)
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lemma one_conv_eq_one : (1 : A)−1 = 1 := by
calc

(1 : A)−1 = 1−1 ; 1 := by rw [comp_one]
_ = (1−1 ; 1)−1−1 := by rw [conv_conv]
_ = (1−1 ; 1−1−1)−1 := by rw [conv_comp]
_ = (1−1 ; 1)−1 := by rw [conv_conv]
_ = 1 := by rw [comp_one, conv_conv]

lemma one_comp (x : A) : 1 ; x = x := by
calc

1 ; x = (1 ; x)−1−1 := by rw [conv_conv]
_ = (x−1 ; 1−1)−1 := by rw [conv_comp]
_ = (x−1 ; 1)−1 := by rw [one_conv_eq_one]
_ = x−1−1 := by rw [comp_one]
_ = x := by rw [conv_conv]
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lemma peirce_law1 (x y z : A) :
x ; y ⊓ z = ⊥ ↔ x−1 ; z ⊓ y = ⊥ := by
constructor
· intro h

have : x ; y ≤ zc := by rw [meet_eq_bot_iff_le_compl]
at h; exact h
have : z ≤ (x ; y)c := by rw [←compl_le_compl_iff_le,
compl_compl] at this; exact this

have : x−1 ; z ≤ x−1 ; (x ; y)c := comp_le_comp_left
x−1 this
have : x−1 ; z ⊓ y ≤ ⊥ := by calc

x−1 ; z ⊓ y ≤ x−1 ; (x ; y)c ⊓ y :=
inf_le_inf_right y this

_ ≤ yc ⊓ y := inf_le_inf_right y (schroeder x y)
_ = ⊥ := by simp

exact bot_unique this
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· intro h
have : x−1 ; z ≤ yc := by rw
[meet_eq_bot_iff_le_compl] at h; exact h
have : y ≤ (x−1 ; z)c := by

rw [←compl_le_compl_iff_le, compl_compl] at this;
exact this
have : x−1−1 ; y ≤ x−1−1 ; (x−1 ; z)c :=
comp_le_comp_left x−1−1 this
have : x−1−1 ; y ⊓ z ≤ ⊥ := by calc

x−1−1 ; y ⊓ z ≤ x−1−1 ; (x−1 ; z)c ⊓ z :=
inf_le_inf_right z this

_ ≤ zc ⊓ z := inf_le_inf_right z (schroeder x−1 z)
_ = ⊥ := by simp

have : x ; y ⊓ z ≤ ⊥ := by rw [conv_conv] at this;
exact this
exact bot_unique this

lemma peirce_law2 (x y z : A) :
x ; y ⊓ z = ⊥ ↔ z ; y−1 ⊓ x = ⊥ := by
. . .
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Definitions for binary relations: Math vs. Lean

Let X be a set and R, S ,T ∈ P(X × X ) binary relations on X

import Mathlib.Data.Set.Basic
variable {X : Type u} (R S T : Set (X × X))

Define composition R ;S = {(x , y) | ∃z , (x , z) ∈ R ∧ (z , y) ∈ S}.

def composition (R S : Set (X × X)) : Set (X × X) :=
{ (x, y) | ∃ z, (x, z) ∈ R ∧ (z, y) ∈ S }

Define the inverse of R by R−1 = {(y , x) | (x , y) ∈ R}

infixl:90 " ; " => composition
postfix:100 "−1" => inverse
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theorem comp_assoc : (R ; S) ; T = R ; (S ; T) := by
rw [Set.ext_iff]
intro (a,b)
constructor
intro h
rcases h with ⟨z, h1, _⟩
rcases h1 with ⟨x,_,_⟩
use x
constructor
trivial
use z
intro h2
rcases h2 with ⟨x, h3, h4⟩
rcases h4 with ⟨y,_,_⟩
use y
constructor
use x
trivial

Peter Jipsen and Pace Nelson Representability and formalization of relation algebras15



Algebras of binary relations

An algebra of binary relations is a set of relations closed under the
operations ∪,∩,c , ; ,−1 , 1

,
.

Can prove the axioms of RAs hold for algebras of binary relations.

A relation algebra is representable if it is isomorphic to an algebra
of binary relations.

Roger Lyndon [1956] found axioms that hold in all algebras of
relations but not in all relation algebras.
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Shortest axioms of Roger Lyndon

J: t ≤ u; v ⊓ w ; x and u−1;w ⊓ v ; x−1 ≤ y ; z
=⇒ t ≤ (u; y ⊓ w ; z−1); (y−1; v ⊓ x ; z)

L: x ; y ⊓ z ;w ⊓ u; v ≤
x ; (x−1; u ⊓ y ; v−1 ⊓ (x−1; z ⊓ y ;w−1); (z−1; u ⊓ w ; v−1)); v

M: t ⊓ (u ⊓ v ;w); (x ⊓ y ; z) ≤
v ; ((v−1; t ⊓ w ; x); z−1 ⊓ w ; y ⊓ v−1; (u; y ⊓ t; z−1)); z
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theorem Jtrue : t ⊆ u;v ∩ w;x ∧ u−1;w ∩ v;x−1 ⊆ y;z
→ t ⊆ (u;y ∩ w;z−1);(y−1;v ∩ z;x) := by

intro h
intro (a,b)
intro h1
rcases h with ⟨h2,h3⟩
have h4 : (a, b) ∈ u ; v ∩ w ; x :=
Set.mem_of_mem_of_subset h1 h2

rcases h4 with ⟨h5, h6⟩
rcases h5 with ⟨c, h7, h8⟩
rcases h6 with ⟨d, h9, H1⟩
have H2 : (c, a) ∈ u−1 := by rw [inv]; dsimp; trivial
have H3 : (c, d) ∈ u−1 ; w := by use a
have H4 : (b, d) ∈ x−1 := by rw [inv]; dsimp; trivial
have H5 : (c, d) ∈ v ; x−1 := by use b
have H6 : (c, d) ∈ u−1 ; w ∩ v ; x−1 := by
constructor; trivial; trivial

have H7 : (c, d) ∈ y ; z := Set.mem_of_mem_of_subset H6
h3

rcases H7 with ⟨e, H8, H9⟩
. . .
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theorem Ltrue :
x;y ∩ z;w ∩ u;v ⊆ x;((x−1;z ∩ y;w−1);(z−1;u ∩ w;v−1) ∩

x−1;u ∩ y;v−1);v := by
intro (a,b)
intro h
rcases h with ⟨h1, h2⟩
rcases h1 with ⟨h3,h4⟩
rcases h3 with ⟨e, h3, h5⟩
rcases h4 with ⟨d, h3, h4⟩
rcases h2 with ⟨c, h6, h7⟩
use c
constructor
use e
constructor
trivial
constructor
constructor
use d
constructor
constructor
. . .
use a
constructor
rw [inv]
dsimp
trivial
trivial
use b
constructor
trivial
rw [inv]
dsimp
trivial
constructor
use a
constructor
rw [inv]
dsimp
trivial
trivial
use b
constructor
trivial
rw [inv]
dsimp
trivial
use a
constructor
rw [inv]
dsimp
trivial
trivial
use b
constructor
trivial
rw [inv]
dsimp
trivial
trivial
. . .
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theorem Mtrue :
t ∩ (u ∩ v ; w) ; (x ∩ y;z) ⊆ v;((v−1;t ∩ w;x);z−1 ∩
w;y ∩ v−1;(u;y ∩ t;z−1));z := by

intro (a,b)
intro h
rcases h with ⟨h1,h2⟩
rcases h2 with ⟨c,h1,h2⟩
rcases h1 with ⟨h3,h4⟩
rcases h4 with ⟨d,h5,h6⟩
rcases h2 with ⟨h7,h8⟩
rcases h8 with ⟨e,h9,h10⟩
use e
constructor
use d
constructor
trivial
constructor
constructor
use b
constructor
. . .
constructor
use a
constructor
rw [inv]
dsimp
trivial
trivial
use c
rw [inv]
dsimp
trivial
use c
use a
constructor
rw [inv]
dsimp
trivial
constructor
use c
use b
constructor
trivial
rw [inv]
dsimp
trivial
trivial
. . .
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Ralph McKenzie’s 16-element relation algebra

This algebra is named 1437 in Roger Maddux’s book [4]

It is a nonrepresentable RA of smallest cardinality

with four atoms: 1
,
, a, r , r−1 and top element ⊤ = 1

,
⊔ a ⊔ r ⊔ r−1

; 1
,

a r r−1

1
,

a a r r−1

a a 1
,
⊔ r ⊔ r−1 a ⊔ r a ⊔ r−1

r r a ⊔ r r ⊤
r−1 r−1 a ⊔ r−1 ⊤ r−1
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All 16 elements of McKenzie’s algebra

⊤

r−1ra1
,

⊥
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McKenzie’s algebra in Lean (as an atom structure)

inductive M : Type | e : M | a : M | r : M | r1 : M
open M
def M.ternary : M → M → M → Prop := fun
| e, e, e => True | e, a, a => True | e, r, r => True
| e, r1, r1 => True | a, e, a => True | a, a, e => True
| a, a, r => True | a, a, r1 => True | a, r, a => True
| a, r, r => True | a, r1, a => True | a, r1, r1 => True
| r, e, r => True | r, a, a => True | r, a, r => True
| r, r, r => True | r, r1, e => True | r, r1, a => True
| r, r1, r => True | r, r1, r1 => True | r1, e, r1 => True
| r1, a, a => True | r1, a, r1 => True | r1, r, e => True
| r1, r, a => True | r1, r, r => True | r1, r, r1 => True
| r1, r1, r1 => True | _, _, _ => False
def M.inv : M → M := fun | e => e | a => a | r => r1 |

r1 => r
def M.unary : M → Prop := fun | e => True | _ => False
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McKenzie’s algebra is nonrepresentable

Theorem [5] McKenzie’s algebra 1437 is not representable.

Proof. The formula M fails in this algebra:

Let t = a, u = r , v = a,w = a, x = r−1, y = a, z = a.

From the table we see u ⊓ v ;w = r ⊓ a; a = r ⊓ (1
,
⊔ r ⊔ r−1) = r

and x ⊓ y ; z = r−1 ⊓ a; a = r−1 ⊓ (1
,
⊔ r ⊔ r−1) = r−1.

Hence the LHS = a ⊓ r ; r−1 = a ⊓ (1
,
⊔ a ⊔ r ⊔ r−1) = a.

However the RHS = a; ((a; a ⊓ a; r−1); a ⊓ a; a ⊓ a; (r ; a ⊓ a; a)); a

= a; (r−1; a ⊓ a; a ⊓ a; r); a = a;⊥; a = ⊥ □
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A database of finite integral relation algebras up to 5 atoms

Let a, b, c, d be symmetric atoms (x−1 = x) and r , s nonsymmetric

The number of RAs up to isomorphism is given below:

1
,

1
,
a 1

,
rr−1 1ab 1

,
arr−1 1

,
abc 1

,
rr−1ss−1 1

,
abrr−1 1

,
abcd

1 2 3 7 37 65 83 1316 3013

Their (non)representability has been decided up to size 16.

These results could benefit from formalization.

For the list of 83 there are 15 RAs that are not known to be
(non)representable: 30,31,32,40,44,45,54,56,59,60,61,63,65,69,79
(see [4])
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Conclusion

Relation algebras can be formalized in Lean using readable syntax

Algebras of binary relations can prove properties like J, L, M

A search for relational bases can be used to find deeper reasons for
nonrepresentability

A compelling application of proof assistants is to formalize results
that are recorded in mathematical databases.
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