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Relation algebras and atom structures (= Kripke frames)

A relation algebra A was defined by Tarski in 1943 as

a Boolean algebra (A,∧,∨,¬,⊥,⊤),

a monoid (A, ;, 1) and

a unary operation ⌣ on A such that

(a ∨ b);c = (a;c) ∨ (b;c), (a ∨ b)⌣ = a⌣ ∨ b⌣, a⌣⌣ = a,
(a;b)⌣ = b⌣;a⌣ and a⌣;¬(a;b) ∨ ¬b = ¬b.

[Maddux 1982] An atom structure (W ,R, I ,⌣ ) is a non-empty
set W , R ⊆ W 3, I ⊆ W , and a map x 7→ x⌣ on W such that

1 x = y ⇐⇒ ∃i ∈ I (Rxiy)

2 ∃z (Rxyz and Rzuv) ⇐⇒ ∃w (Ryuw and Rxwv)

3 Rxyz ⇐⇒ Rzy⌣x

4 Rxyz ⇐⇒ Rx⌣zy

Atom structures are dual to complete and atomic relation algebras.
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Complete and perfect lattices

Recall that a lattice is complete if all joins and meets exist.

A lattice is atomic if every non-bottom element is greater or equal
to an atom (i.e., an element that covers ⊥).

A Boolean algebra is atomic ⇐⇒ every element is a join of atoms.

Tarski duality: a Boolean algebra is complete and atomic ⇐⇒ it
is isomorphic to a powerset Boolean algebra (caBA ≡ Setop)

A lattice is perfect if every element if both the join of completely
join-irreducibles and the meet of completely meet-irreducibles.

A distributive lattice is complete and perfect ⇐⇒ it is
isomorphic to the lattice of up-sets of a partial order.

We now generalize relation algebras to a non-Boolean setting.
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Distributive involutive full Lambek algebras

An involutive residuated lattice or InFL-algebra A is a lattice
(A,∧,∨), a monoid (A, ·, 1) and two unary operations called linear
negations ∼,− such that

a · b ≤ c ⇐⇒ a ≤ −(b · ∼c) ⇐⇒ b ≤ ∼(−c · a).

An InFL-algebra is cyclic if ∼a = −a and

distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Every relation algebra is a cyclic distributive InFL-algebra if
we define

∼a = −a = ¬a⌣ and a ; b = a · b.

Want to define “atom structures” for distributive InFL-algebras.
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Examples of DInFL-algebras (and DqRAs)

NB: smallest non-cyclic DInFL-algebra has 7 elements (see A4 below)

A1

∼1 = −1 = 0

0 1

02
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1

0

02

A3
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0

02
A4

fe=c d=ef

e f

1

0

Every Sugihara monoid B = (B,∧,∨, ·,→, 1,∼) gives rise to
a DInFL-algebra BD = (B,∧,∨, ·, 1,∼,−) where − = ∼.

A3: −a = ∼a = b, −b = ∼b = a, ¬a = a, ¬b = b

A4: ∼ = −−1 : c → f → d → e → c ¬ : c → e → c , d → f → d
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DInFL-frames

A DInFL-frame is a tuple W = (W , I ,⪯,R,∼ ,− ) with

W ̸= ∅
I a unary predicate

⪯ a partial order

R ⊆ W 3

∼ : W → W and − : W → W

I ∈ Up(W ,⪯).

and:

1 x ⪯ y ⇐⇒ ∃i (i ∈ I ∧ Rixy)

2 x ⪯ y ⇐⇒ ∃i (i ∈ I ∧ Rxiy)

3 x ⪯ y ∧ Ruvx =⇒ Ruvy

4 ∃z (Rxyz ∧ Rzuv) ⇐⇒ ∃w (Ryuw ∧ Rxwv)

5 Rxyz∼ ⇐⇒ Rzxy−

6 x∼− ⪯ x and x−∼ ⪯ x
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DInFL-frames are dual to complete perfect DInFL-algebras

Proposition

Let W = (W , I ,⪯,R,∼ ,− ) be a DInFL-frame.

Let Up (W ,⪯) be the set of all upsets of (W ,⪯).

For all U,V ∈ Up (W ,⪯) define

U ◦ V = {w ∈ W | (∃u ∈ U) (∃v ∈ V ) (Ruvw)},
∼U = {w ∈ W | w− /∈ U} and −U = {w ∈ W | w∼ /∈ U}.
Then W+ = (Up (W ,⪯) ,∩,∪, ◦, I ,∼,−) is a DInFL-algebra.

Proposition

Let A = (A,∧,∨, ·, 1,∼,−) be a complete perfect DInFL-algebra.

Let J∞(A) be the set of completely join-irreducibles of A.

Set I1 = {i ∈ J∞(A) | i ⩽ 1} and, for all a, b, c ∈ J∞(A),

define ⪯ = ⩾, R·abc iff c ⩽ a · b, a∼ = ∼κ (a) and a− = −κ (a).
Then A+ = (J∞ (A) , I1,⪯,R·,

∼ ,− ) is a DInFL-frame.
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Theorem

If A = (A,∧,∨, ·, 1,∼,−) is a complete perfect DInFL-algebra,
then A ∼= (A+)

+.

Theorem

If W = (W , I ,⪯,R,∼ ,− ) is a DInFL- frame, then W ∼= (W+)+.

DInFL-algebras are much more general than relation algebras, and
it is not known whether the variety of DInFL-algebras is decidable.

An intermediate variety DqRA of distributive quasi relation
algebras was defined in [Galatos & J 2013].
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Distributive quasi relation algebras and DqRA-frames

A quasi relation algebra (qRA) A is an InFL-algebra
(A,∧,∨, ·, 1,∼,−) with a De Morgan operation ¬ such that
¬¬x = x and

(Dm) ¬(x ∧ y) = ¬x ∨ ¬y
(Dp) ¬(x · y) = ¬x + ¬y where x + y = ∼(−y · −x)

A DqRA is a distributive qRA.

The equational theories of qRA and DqRA are decidable .

A DqRA-frame is a tuple W = (W , I ,⪯,R,∼ ,− ,¬ ) such that
(W , I ,⪯,R,∼ ,− ) is a DInFL-frame and:

7 x¬¬ = x

8 x ⪯ y =⇒ y¬ ⪯ x¬

9 Rxyz− ⇐⇒ Ry∼¬x∼¬z¬.
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Every RA is a DqRA and every CInFL expands to a qRA

Let A = (A,∧,∨,¬,⊥,⊤, ;, 1,⌣ ) be a RA and define ∼x = ¬x⌣.

Then (A,∧,∨,¬, ;, 1,∼,∼) is a cyclic DqRA since ¬¬x = x and
(Dm) hold in BA, and (Dp) holds in any RA:

¬x + ¬y = ∼(∼¬y ;∼¬x) = ¬(y⌣;x⌣)⌣ = ¬(x ;y).

Let A = (A,∧,∨, ·, 1,∼,∼) be a commutative (i.e., x · y = y · x ,
hence cyclic) InFL-algebra and define ¬x = ∼x .

Then (A,∧,∨,¬, ·, 1,∼,∼) is a qRA since ∼∼x = x and (Dm)
hold in any cyclic InFL-algebra, and (Dp) holds in any
commutative InFL-algebra (by definition of +).
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Duality for DqRAs and DqRA-frames

Theorem

If A is a complete perfect DqRA, then A ∼= (A+)
+.

Proof (Outline).

The isomorphism is given by the map ψ : A → Up (J∞ (A) ,⪯)
defined by ψ (a) = {j ∈ J∞ (A) | j ⩽ a}.

Theorem

If W = (W , I ,⪯,R,∼ ,− ,¬ ) is a DqRA-frame, then W ∼= (W+)+.
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Priestley spaces are duals of bounded distributive lattices

To obtain a duality for incomplete or imperfect distributive lattices,
we need to use topology.

A partially ordered topological space (X ,⩽, τ) is totally
order-disconnected if whenever x ⩽̸ y there exists a clopen up-set
U of X such that x ∈ U and y /∈ U.

A Priestley space is a compact totally order-disconnected space.

Theorem (Priestley 1970)

Every bounded distributive lattice is isomorphic to the set of
clopen sets of a Priestley space.

The category of distributive lattices with homomorphisms is
dual to the category of Priestley spaces with continuous
order-preserving maps.
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Priestley spaces for incomplete or imperfect algebras

Infinite DInFL-algebras/DqRAs may lack bounds. Hence dual
spaces must be doubly-pointed Priestley spaces.

A DInFL-space (W , I ,⪯,R,∼ ,− ,⊥,⊤, τ) is a doubly-pointed
DInFL-frame with a compact totally order-disconnected topology τ
satisfying:

1 I is clopen.

2 If U and V are clopen proper nonempty up-sets, then U ◦V is
clopen.

3 If U is a clopen proper nonempty up-set, then ∼U and −U
are clopen.
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DqRA-spaces and dualities

A DqRA-space (W , I ,⪯,R,∼ ,− ,¬ ,⊥,⊤, τ) is a doubly-pointed
DqRA-frame with a compact totally order-disconnected topology τ
which satisfies:

1 I is clopen.

2 If U and V are clopen proper nonempty up-sets, then U ◦V is
clopen.

3 If U is a clopen proper nonempty up-set, then ∼U, −U and
¬U are clopen.

Here ¬U = {w ∈ W | w¬ /∈ U}.
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From algebras to spaces and back

A generalized prime filter of a lattice is either a prime filter or
the whole lattice or the empty set.

Proposition

For a DInFL-algebra A, let WA be the set of generalised prime
filters of the lattice reduct of A.
For all F ,G ,H in WA, define F ∈ I iff 1 ∈ F , F ⪯ G iff F ⊆ G,
R (F ,G ,H) iff for all a ∈ F and all b ∈ G we have a · b ∈ H,
F∼ = {∼a | a /∈ F} and F− = {−a | a /∈ F}. Then the structure
F(A) = (WA, I,⪯,R,∼ ,− ,∅,A) is a doubly-pointed DInFL-frame.

Let W(A) = (F(A), τ) where τ is the topology on the set of
generalised prime filters with subbasic open sets of the form
Xa = {F ∈ WA | a ∈ F} and X c

a = {F ∈ WA | a /∈ F}.
For a DInFL-space W, we denote by KW the set of clopen proper
non-empty upsets of W.

Define A(W) to be the algebra (KW,∩,∪, ◦, I ,∼,−).
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Dualities

Then W(A) is a DInFL-space and A(W) is a DInFL-algebra.

Theorem

Let A be a DInFL-algebra and W a DInFL-space. Then we have
A ∼= A(W(A)) and W ∼= W(A(W)).

The same result holds for DqRA and DqRA-spaces if we add
F¬ = {¬a | a /∈ F} to W(A) and ¬U = {w ∈ W | w¬ /∈ U} to A(W).

Theorem

DInFL-algebras are dual to DInFL-spaces.

DqRAs are dual to DqRA-spaces.
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DqRAs that are subreducts of nonsymmmetric relation
algebras

A proper DqRA is one that is not a relation algebra (where
x⌣ = ∼¬x).

From a RA we can obtain cyclic DqRAs by letting ∼x = ¬x⌣,
finding {∨, ;,∼}-subreducts, and then checking if ¬ can be defined.

Recall that if the subreduct is commutative then ¬x = ∼x works.

If the RA is symmetric (x⌣ = x) then ∼x = ¬x , so there are no
proper subreducts.

Hence we consider only nonsymmetric RAs and check all
16-element RAs for “interesting” subreducts.

In Roger Maddux’s book Relation Algebras [2006] there is a list of
all nonsymmetric integral relation algebras with 16 elements.
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·1 a r s
a 1 r s
r r r ⊤
s s ⊤ s

·2 a r s
a 1a r s
r r r ⊤
s s ⊤ s

·3 a r s
a 1 r s
r r s 1a
s s 1a r

·4 a r s
a 1a r s
r r s 1a
s s 1a r

·5 a r s
a 1 r s
r r rs ⊤
s s ⊤ rs

·6 a r s
a 1a r s
r r rs ⊤
s s ⊤ rs

·7 a r s
a 1rs a a
r a r 1rs
s a 1rs s

·8 a r s
a ⊤ a a
r a r 1rs
s a 1rs s

·9 a r s
a 1rs a a
r a s 1
s a 1 r

·10 a r s
a ⊤ a a
r a s 1
s a 1 r

·11 a r s
a 1rs a a
r a rs 1rs
s a 1rs rs

·12 a r s
a ⊤ a a
r a rs 1rs
s a 1rs rs

·13 a r s
a ⊤ ar a
r a r ⊤
s as 1rs s

·14 a r s
a 1rs ar as
r ar r ⊤
s as ⊤ s

·15 a r s
a ⊤ ar as
r ar r ⊤
s as ⊤ s

·16 a r s
a 1rs ar as
r ar rs ⊤
s as ⊤ rs

·17 a r s
a ⊤ ar as
r ar rs ⊤
s as ⊤ rs

·18 a r s
a 1 s r
r s a 1
s r 1 a

·19 a r s
a 1 s r
r s ars 1rs
s r 1rs ars

·20 a r s
a 1a rs rs
r rs a 1a
s rs 1a a

·21 a r s
a 1a rs rs
r rs ar ⊤
s rs ⊤ as

·22 a r s
a 1a rs rs
r rs ars ⊤
s rs ⊤ ars

·23 a r s
a 1rs as ar
r as ar 1rs
s ar 1rs as

·24 a r s
a ⊤ as ar
r as ar 1rs
s ar 1rs as

·25 a r s
a 1rs as ar
r as ars 1rs
s ar 1rs ars

·26 a r s
a ⊤ as ar
r as ars 1rs
s ar 1rs ars

·27 a r s
a 1rs ars ar
r as ar ⊤
s ars 1rs as

·28 a r s
a ⊤ ars ar
r as ar ⊤
s ars 1rs as

·29 a r s
a 1rs ars ar
r as ars ⊤
s ars 1rs ars

·30 a r s
a ⊤ ars ar
r as ars ⊤
s ars 1rs ars

·31 a r s
a ⊤ ars ars
r ars a 1a
s ars 1a a

·32 a r s
a 1rs ars ars
r ars ar ⊤
s ars ⊤ as

·33 a r s
a ⊤ ars ars
r ars ar ⊤
s ars ⊤ as

·34 a r s
a 1rs ars ars
r ars as 1a
s ars 1a ar

·35 a r s
a ⊤ ars ars
r ars as 1a
s ars 1a ar

·36 a r s
a 1rs ars ars
r ars ars ⊤
s ars ⊤ ars

·37 a r s
a ⊤ ars ars
r ars ars ⊤
s ars ⊤ ars

Table: Atom structures (= frames) for the 37 nonsymmetric RAs of
cardinality 16. The identity atom 1 is not shown, a string of elements
denotes the join of them, and ∼a = 1rs, ∼r = 1ar , ∼s = 1as.
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Some background on these 37 nonsymmetric RAs

A relation algebra is representable if it is isomorphic to an algebra
of binary relation on a set with ∧ = ∩, ; = ◦, 1 = id , ⌣ = −1.

Lyndon [1950] found a nonrepresentable RA, and in [1956] showed
that all relation algebras with 8 elements or less are representable.

McKenzie [1966] found the smallest (16-element) nonrepresentable
relation algebra (now referred to as 1437).

There are 10 further algebras in the list of 37 that are
nonrepresentable: 1637, 2137, 2437 − 2937, 3237, 3437.

The representations of the remaining 26 relation algebras were
found by Steven Comer and Roger Maddux.
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(Dq)RA-subreducts

We now describe the maximal subreducts of these 37 relation
algebras that are proper DqRAs.

When they occur as a subreduct of a representable relation algebra,
they are themselves representable (indicated by bold names below).

The frames for the first type of subreducts are based on the poset
1+1+2, and there are 20 (nonisomorphic) frames of this kind.

The corresponding DqRAs have 12 elements forming the lattice
2×2×3.

137, 237, 537, 637, 737, 837, 1137, 1237, 1437, 1537, 1637, 1737,
2037, 2137, 2237, 3137, 3237, 3337, 3636, 3737.
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(Dq)RA-subreducts

In each case the 2-element chain in the frame is given by s ≺ r (or
isomorphically by r ≺ s).

To see that this frame corresponds to a subreduct of the listed
relation algebras, it suffices to check that s ≤ x · y =⇒ r ≤ x · y
for all x , y ∈ {a, r , r ∨ s}.

This formula fails for the other 17 nonsymmetric integral relation
algebras with 16 elements (see Table 1).

Hence there are at least 16 representable DqRA with poset 1+1+2
as their frame.

Using the representation game in [J & Šemrl 2023] it has been
checked that the DqRA-subreduct of McKenzie’s algebra 1437 is
not representable.
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(Dq)RA-subreducts

Ten of the remaining 17 relation algebras in the list have a
maximal DqRA-subreduct with 1+3 as poset:

1337, 1937, 2337, 2437, 2537, 2637, 2737, 2837, 2937, 3037.

In this case, the poset of the frame satisfies s ≺ a ≺ r (or
isomorphically r ≺ a ≺ s)

Such a frame corresponds to an 8-element subreduct of a relation
algebras if it satisfies s ≤ x · y =⇒ a ∨ r ≤ x · y and
a ≤ x · y =⇒ r ≤ x · y for all x , y ∈ {r , a ∨ r , a ∨ r ∨ s}.
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(Dq)RA-subreducts

The algebras 1337, 2737 − 3037 are noncommutative.

But the DqRA-subreducts are commutative, hence they can be
expanded to DqRAs.

Four of the relation algebras in this list are representable, but the
DqRA-subreducts of 1937 and 3037 are isomorphic, so this gives
representations for three 8-element DqRAs.

Other representable 8-element DqRAs can be found as subalgebras
of the sixteen representable 12-element DqRAs described above.

7 algebras do not have subreducts that produce proper DqRAs:
337, 437, 937, 1037, 1837, 3437, 3537.
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Conclusion

We obtained first-order axiomatizations for DInFL-frames and
DqRA-frames that are dual to complete perfect distributive
involutive FL-algebras and distributive quasi relation algebras
respectively.

Adding doubly-pointed Priestley-space topologies to these frames
we obtain dual spaces for these algebras without requiring them to
be complete and perfect.

For small nonsymmetric relation algebras, DqRA-frames can be
used to provide representations for 16 DqRAs with 12 elements
and for 3 DqRAs with 8 elements.
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