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Introduction

Aim: cover the basics about relations and Kleene algebras
within the framework of universal algebra

This is a tutorial

Slides give precise definitions, lots of statements

Decide which statements are true (can be improved)
which are false (and perhaps how they can be fixed)

[Hint: a list of pages with false statements is at the end]
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Prerequisites

Knowledge of sets, union, intersection, complementation

Some basic first-order logic

Basic discrete math (e.g. function notation)

These notes take an algebraic perspective

Conventions:

Minimize distinction between concrete and abstract notation

x , y , z , x1, . . . variables (implicitly universally quantified)

X , Y , Z , X1, . . . set variables (implicitly universally quantified)

f , g , h, f1, . . . function variables

a, b, c , a1, . . . constants

i , j , k , i1, . . . integer variables, usually nonnegative

m, n, n1, . . . nonnegative integer constants
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Algebraic properties of set operation

Let U be a set, and P(U) = {X : X ⊆ U} the powerset of U

P(U) is an algebra with operations union ∪, intersection ∩,
complementation X− = U \ X

Satisfies many identities: e.g. X ∪ Y = Y ∪ X for all X , Y ∈ P(U)

How can we describe the set of all identities that hold?

Can we decide if a particular identity holds in all powerset algebras?

These are questions about the equational theory of these algebras

We will consider similar questions about several other types of algebras,
in particular relation algebras and Kleene algebras
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Binary relations

An ordered pair, written (u, v), has the defining property

(u, v) = (x , y) iff u = x and v = y

The direct product of sets U, V is

U × V = {(u, v) : u ∈ U, v ∈ V }

A binary relation R from U to V is a subset of U × V

Write uRv if (u, v) ∈ R, otherwise write u/Rv

Define uR = {v : uRv} and Rv = {u : uRv}
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Operations on binary relations

Composition of relations: R; S = {(u, v) : uR ∩ Rv 6= ∅}

= {(u, v) : ∃x uRx and xSv}

Converse of R is R` = {(v , u) : (u, v) ∈ R}

Identity relation IU = {(u, u) : u ∈ U}

A binary relation on a set U is a subset of U × U

Define R0 = IU and Rn+1 = R; Rn for n ≥ 0

Transitive closure of R is R+ =
⋃

n≥1

Rn

Reflexive transitive closure of R is R∗ = R+ ∪ IU =
⋃

n≥0

Rn
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Properties of binary relations

Let R be a binary relation on U

R is reflexive if xRx for all x ∈ U

R is irreflexive if x /Rx for all x ∈ U

R is symmetric if xRy implies yRx (implicitly quantified)

R is antisymmetric if xRy and yRx implies x = y

R is transitive if xRy and yRz implies xRz

R is univalent if xRy and xRz implies y = z

R is total if xR 6= ∅ for all x ∈ U (otherwise partial)
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Properties in relational form

Prove (and extend) or disprove (and fix)

R is reflexive iff IU ⊆ R

R is irreflexive iff IU * R

R is symmetric iff R ⊆ R` iff R = R`

R is antisymmetric iff R ∩ R` = IU

R is transitive iff R; R = R iff R = R+

R is univalent iff R; R` ⊆ IU

R is total iff IU ⊆ R; R`
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Binary operations and properties

A binary operation + on U is a function from U × U to U

Write +(x , y) as x + y

+ is idempotent if x + x = x (all implicitly universally quantified)

+ is commutative if x + y = y + x

+ is associative if (x + y) + z = x + (y + z)

+ is conservative if x + y = x or x + y = y

+ is left cancellative if z + x = z + y implies x = y

+ is right cancellative if x + z = y + z implies x = y
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Connection with relations

Define R+ on U by xR+y iff x + z = y for some z ∈ U

Prove (and extend) or disprove (and fix)

If + is idempotent then R+ is reflexive.

If + is commutative then R+ is antisymmetric.

If + is associative then R+ is transitive.

A semigroup is a set with an associative binary operation

A band is a semigroup (U, +) such that + is idempotent

A quasi-ordered set (qoset) is a set with a reflexive transitive relation

⇒ If (U, +) is a band then (U, R+) is a qoset
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More specific connection with relations

Define ≤+ on U by x ≤+ y iff x + y = y

Prove (and extend) or disprove (and fix)

+ is idempotent iff ≤+ is reflexive.

+ is commutative iff ≤+ is antisymmetric.

+ is associative iff ≤+ is transitive.

A semilattice is a band (U, +) such that + is commutative

A partially ordered set is a qoset (U, R) such that R is antisymmetric

⇒ If (U, +) is a semilattice then (U,≤+) is a partially ordered set
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A partially ordered set is called a poset for short

A strict partial order is an irreflexive transitive relation

Prove (and extend) or disprove (and fix)

If < is a strict partial order on U, then (U, < ∪ IU) is a poset.
If (U,≤) is a poset, then < = ≤ \ IU is a strict partial order.

For a, b ∈ U we say that a is covered by b (written a ≺ b)
if a < b and there is no x such that a < x < b

To visualize a finite poset we can draw a Hasse diagram:

a is connected with an upward sloping line to b if a ≺ b

Nonisomorphic connected posets with ≤ 4 elements
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Equivalence relations

An equivalence relation is a reflexive symmetric transitive relation

Prove (and extend) or disprove (and fix)

R is an equivalence relation on U iff IU ⊆ R = R`; R

Let R be an equivalence relation on a set U, and u ∈ U

Then uR = {x : uRx} is called an equivalence class of R

Usually written [u]R or simply [u]; u is called a representative of [u]

The set of all equivalence classes of R is U/R = {[u] : u ∈ U}

Equivalence relations on a 3-element set
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Partitions

A partition of U is a subset P of P(U) such that

⋃

P = U, ∅ /∈ P, and X = Y or X ∩ Y = ∅ for all X , Y ∈ P

(where
⋃

P = {x : x ∈ X for some X ∈ P})

For a partition P define a relation by x ≡P y iff x , y ∈ X for some X ∈ P

Prove (and extend) or disprove (and fix)

The map f (R) = U/R is a bijection from the set of equivalence relations
on U to the set of partitions of U, with f −1(P) given by ≡P .

Partitions of a 3-element set
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The poset induced by a quasi-order

For a qoset (U,v), define a relation on U by x ≡ y iff x v y and y v x

Now define ≤ on U/≡ by [x ] ≤ [y ] iff x v y

≤ is said to be well defined if [x ′] = [x ] ≤ [y ] = [y ′] implies [x ′] ≤ [y ′]

Prove (and extend) or disprove (and fix)

The relation ≤ is well defined and (U/≡,≤) is a poset.

Factoring mathematical structures by appropriate equivalence relations is a
powerful way of understanding and creating new structures.

◦ ◦
◦ ◦

Nonisomorphic connected qosets on 4 elements

◦◦

◦◦

◦ ◦ ◦

◦ ◦ ◦ ◦

◦ ◦◦ ◦

◦ ◦◦ ◦

◦

◦◦

◦◦ ◦◦

◦◦

◦◦

◦

◦

◦

◦◦

◦

◦

◦

◦◦
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Some classes of binary relations

all rels

a r s t

ar rs at qosets st

subid relsposets equiv rels

id rels

a = antisymmetric
r = reflexive
s = symmetric
t = transitive
a and s ⇒ t
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Tuples and direct products

We have seen several examples of algebras and relational structures:

(U, +) an algebra with one binary operation, e.g. (N, +), (P(U),∪)

(U, R) a relational structure with a binary relation, e.g. (N,≤), (P(U),⊆)

Applications usually involve several n-ary operations and relations

For a set I , an I -tuple (ui )i∈I is a function mapping i ∈ I to ui .

A tuple over (Ui )i∈I is an I -tuple (ui )i∈I such that ui ∈ Ui for all i ∈ I

The direct product
∏

i∈I Ui is the set of all tuples over (Ui )i∈I

In particular,
∏

i∈I U is the set U I of all functions from I to U

If I = {1, . . . , n} then we write U I = Un and
∏

i∈I Ui = U1 × · · · × Un

Note: U0 = U∅ = {()} has one element, namely the empty function () = ∅
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Algebras and relational structures

A (unisorted first-order) structure is a tuple U = (U, (f U)f ∈Fτ
, (RU)R∈Rτ

)

U is the underlying set

Fτ is a set of operation symbols and

Rτ is a set of relation symbols (disjoint from Fτ )

The type τ : Fτ ∪Rτ → {0, 1, 2, . . . } gives the arity of each symbol

f U : Uτ(f ) → U and RU ⊆ Uτ(R) are the interpretation of symbol f and R

0-ary operation symbols are called constant symbols

U is a (universal) algebra if Rτ = ∅; use A,B,C for algebras

Convention: the string of symbols f (x1, . . . , xn) implies that f has arity n

The superscript U is often omitted
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Monoids and involution

Recall that (A, ·) a semigroup if · is an associative operation

A monoid is a semigroup with an identity element

i.e. of the form (A, ·, 1) such that x · 1 = x = 1 · x

An involutive semigroup is a semigroup with an involution

i.e. of the form (A, ·,` ) such that ` has period two: x`` = x , and
` antidistributes over ·: (x · y)` = y` · x`

Prove (and extend) or disprove (and fix)

If an involutive semigroup satisfies x · 1 = x for some element 1 and all x
then it satisfies 1` = 1 and 1 · x = x

An involutive monoid is a monoid with an involution

A group is an involutive monoid such that x · x` = 1
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Join-semilattices
A semilattice is a commutative idempotent semigroup

(A, +,≤) is a join-semilattice if
(A, +) is a semilattice and x ≤ y ⇔ x + y = y

Prove (and extend) or disprove (and fix)

(A, +,≤) is a join-semilattice
iff (A,≤) is a poset and x + y = z ⇔ ∀w(x ≤ w and y ≤ w ⇔ z ≤ w)
iff (A,≤) is a poset and x + y ≤ z ⇔ x ≤ z and y ≤ z

⇒ any two elements x , y have a least upper bound x + y

Which of the following are join-semilattices?
Nonisomorphic connected posets with ≤ 4 elements
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Lattices and duals

A meet-semilattice (A, ·,≤) is a semilattice with x ≤ y ⇔ x · y = x

(A, +, ·) is a lattice if +, · are associative, commutative operations that
satisfy the absorption laws: x + (y · x) = x = (x + y) · x

Prove (and extend) or disprove (and fix)

(A, +, ·) is a lattice iff (A, +,≤) is a join-semilattice and (A, ·,≤) is a
meet-semilattice where x ≤ y ⇔ x + y = y.

Define x ≥ y ⇔ y ≤ x . The dual (A, +,≤)d = (A, +,≥)
(A, ·,≤)d = (A, ·,≥) and (A, +, ·)d = (A, ·, +)

Prove (and extend) or disprove (and fix)

The dual of a join-semilattice is a meet-semilattice and vice versa.
The dual of a lattice is again a lattice.
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Distributivity and bounds

A lattice is distributive if it satisfies x · (y + z) = (x · y) + (x · z)

Prove (and extend) or disprove (and fix)

A lattice is distributive iff x + (y · z) = (x + y) · (x + z) iff
(x + y) · (x + z) · (y + z) = (x · y) + (x · z) + (y · z)

⇒ a lattice is distributive iff its dual is distributive

A semilattice with identity is a commutative idempotent monoid

(A, +, 0, ·,>) is a bounded lattice if
(A, +, ·) is a lattice and (A, +, 0), (A, ·,>) are semilattices with identity

Prove (and extend) or disprove (and fix)

Suppose (A, +, ·) is a lattice. Then (A, +, 0, ·,>) is a bounded lattice
iff 0 ≤ x ≤ > iff x · 0 = 0 and x + > = >
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Complementation and Boolean algebras

(A, +, 0, ·,>,− ) is a lattice with complementation if (A, +, 0, ·,>) is a
bounded lattice such that x + x− = > and x · x− = 0

Prove (and extend) or disprove (and fix)

Lattices with complementation satisfy x−− = x and DeMorgan’s laws
(x + y)− = x− · y− and (x · y)− = x− + y−

A Boolean algebra is a distributive lattice with complementation

Prove (and extend) or disprove (and fix)

Boolean algebras satisfy x−− = x and DeMorgan’s laws
(x + y)− = x− · y− and (x · y)− = x− + y−

Prove (and extend) or disprove (and fix)

(A, +, 0, ·,>,− ) is a Boolean algebra iff + is commutative with identity 0, · is commutative
with identity 1, + distributes over ·, · distributes over +, x + x− = > and x · x− = 0.
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Boolean algebras of sets

P(U) = (P(U),∪, ∅,∩, U,− ) is the Boolean algebra of all subsets of U

A concrete Boolean algebra is any collection of subsets of a set U that is
closed under ∪, ∩, and −

The atoms of a join-semilattice with 0 are the covers of 0

A join-semilattice with 0 is atomless if it has no atoms, and

atomic if for every x 6= 0 there is an atom a ≤ x

Prove (and extend) or disprove (and fix)

P(U) is atomic for every set U

H = {(a1, b1] ∪ · · · ∪ (an, bn] : 0 ≤ ai < bi ≤ 1 are rationals, n ∈ N} is an
atomless concrete Boolean algebra with U the set of positive rationals ≤ 1
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Relation algebras

An (abstract) relation algebra is of the form (A, +, 0, ·, >,− , ;, 1,` ) where

(A, +, 0, ·, >,− ) is a Boolean algebra
(A, ;, 1) is a monoid
(x ;y) · z = 0 ⇔ (x`;z) · y = 0 ⇔ (z ;y`) · x = 0

The last line states the Schröder equivalences (or DeMorgan’s Thm K)

Prove (and extend) or disprove (and fix)

In a relation algebra x`` = x and ` is self-conjugated, i.e.
x` · y = 0 ⇔ x · y` = 0. Hence (x + y)` = x` + y`, x−` = x`−,
(x · y)` = x` · y`, ` is an involution and x ;(y + z) = x ;y + x ;z.
Hint: In a Boolean algebra u = v iff ∀x(u · x = 0 ⇔ v · x = 0)

Prove (and extend) or disprove (and fix)

A Boolean algebra expanded with an involutive monoid is a relation algebra
iff x ;(y + z) = x ;y + x ;z, (x + y)` = x` + y` and (x`; (x ; y)−) · y = 0
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Concrete relation algebras

Rel(U) = (P(U2),∪,∩, ∅, U2,− , ;, IU ,` ) the square relation algebra on U

A concrete relation algebra is of the form (C,∪,∩, ∅,>,− , ;, IU ,` ) where C
is a set of binary relations on a set U that is closed under the operations
∪, −, ;, `, and contains IU

Prove (and extend) or disprove (and fix)

Every square relation algebra is concrete.

Every concrete relation algebra is a relation algebra, and the largest
relation is an equivalence relation

Relation algebras have applications in program semantics, specification,
derivation, databases, set theory, finite variable logic, combinatorics, . . .
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Idempotent semirings

A semiring is an algebra (A, +, 0, ;, 1) such that

(A, +, 0) is a commutative monoid

(A, ;, 1) is a monoid

x ;(y + z) = (x ;y) + (x ;z), (x + y);z = (x ;z) + (y ;z)

x ; 0 = 0 = 0; x

A semiring is idempotent if x + x = x

⇒ an idempotent semiring is a join-semilattice with x ≤ y ⇔ x + y = y , a
bottom element 0, ; distributes over + and 0 is a zero for ;

Prove (and extend) or disprove (and fix)

In an idempotent semiring x ≤ y implies x ;z ≤ y ;z and z ;x ≤ z ;y

For any monoid M = (M, ·, 1), the powerset idempotent semiring is
P(M) = (P(M),∪, ∅, ;, {1}) where X ; Y = {x · y : x ∈ X , y ∈ Y }
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Kleene algebras

A Kleene algebra is of the form (A, +, 0, ;, 1,∗ ) where

(A, +, 0, ;, 1) is an idempotent semiring

1 + x + x∗;x∗ = x∗

x ;y ≤ y ⇒ x∗;y ≤ y (where x ≤ y ⇔ x + y = y)

y ;x ≤ y ⇒ y ;x∗ ≤ y

Prove (and extend) or disprove (and fix)

Let M = (M, ·, 1) be a monoid. Then P(M) can be expanded to a Kleene
algebra if we define X ∗ =

⋃

n≥0 X n where X 0 = {1} and X n+1 = X n; X

Prove (and extend) or disprove (and fix)

For any set U, KRel(U) = (P(U2),∪, ∅, ;, IU ,∗ ) is a Kleene algebra

Peter Jipsen (Chapman University) Relation algebras and Kleene algebra September 4, 2006 28 / 84



Kleene algebras continued

Traditionally we write x ;y simply as xy

A Kleene expression has an opposite given by reversing the expression.

The opposite axioms of Kleene algebras again define Kleene algebras, so
any proof of a result can be converted to a proof of the opposite result

Prove (and extend) or disprove (and fix)

In a Kleene algebra xn ≤ x∗ for all n ≥ 0 (where x0 = 1, xn+1 = xnx)
x ≤ y ⇒ x∗ ≤ y∗

xx∗ = x∗x x∗∗ = x∗ and x∗ = 1 + x+ where x+ = xx∗

xy + z ≤ y ⇒ x∗z ≤ y (and its opposite)
xy = yz ⇒ x∗y = yz∗

(xy)∗x = x(yx)∗ and (x + y)∗ = x∗(yx∗)∗

Kleene algebras have applications in automata theory, parsing, pattern
matching, semantics and logic of programs, analysis of algorithms,. . .
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Kleene algebras with tests

Kleene algebras model concatenation, nondeterministic choice and
iteration, but to model programs need guarded choice and guarded
iteration

A Kleene algebra with tests (KAT) is of the form (A, +, 0, ;, 1,∗ ,− , B)
where (A, +, 0, ;, 1,∗ ) is a Kleene algebra, B is a unary relation (⊆ A) and
x , y ∈ B ⇒ x + y , x ;y , x−, 0, 1 ∈ B, x ;x = x , x ;x− = 0, x + x− = 1

Prove (and extend) or disprove (and fix)

In a KAT, (B, +, 0, ;, 1,− ) is a Boolean algebra

[Kozen 1996] defines KATs as two-sorted algebras, but here they are
one-sorted structures with − a partial operation defined only on B

The program construct if b then p else q is expressed by b;p + b−;q

while b do p is expressed by (b;p)∗;b−

Peter Jipsen (Chapman University) Relation algebras and Kleene algebra September 4, 2006 30 / 84



Idempotent semirings with domain and range

Every Kleene algebra is a KAT with B = {0, 1}

In KRel(U) the tests are a subalgebra of P(IU)

Can also define idempotent semirings with tests (just omit ∗)

More expressive: add a domain operator [Desharnais Möller Struth 2006]

An idempotent semiring with predomain is of the form (A, +, 0, ;, 1,− , δ)
where (A, +, 0, ;, 1,− , δ[A]) is an idempotent semiring with tests,

x ≤ δ(x);x and δ(δ(x);y) ≤ δ(x)

For idempotent semirings with domain add δ(x ;δ(y)) ≤ δ(x ;y)

In Rel(U) the domain operator is definable by δ(R) = (R;R`) ∩ IU

Idempotent semirings with (pre)range operator are opposite
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Terms and formulas

UA is a framework for studying and comparing all these algebras

Given a set X , the set of τ -terms with variables from X is the smallest set
T = Tτ (X ) such that

X ⊆ T and

if t1, . . . , tn ∈ T and f ∈ Fτ then f (t1, . . . , tn) ∈ T .

The term algebra over X is Tτ (X ) = T = (Tτ (X ), (f T)f ∈Fτ
) with

f T(t1, . . . , tn) = f (t1, . . . , tn) for t1, . . . , tn ∈ Tτ (X )

A τ -equation is a pair of τ -terms (s, t), usually written s = t

A quasiequation is an implication (s1 = t1 and . . . and sn = tn ⇒ s0 = t0)
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Models and theories

An atomic formula is a τ -equation or R(x1, . . . , xn) for R ∈ Rτ

A τ -formula φ ::= atomic frm.|φandφ|φorφ|¬φ|φ ⇒ φ|φ ⇔ φ|∀xφ|∃xφ

Write U |= φ if τ -formula φ holds in τ -structure U (standard defn)

Throughout K is a class of τ -structures, F a set of τ -formulas

Write K |= F if U |= φ for all U ∈ K and φ ∈ F

Mod(F ) = {U : U |= F} = class of all models of F

Th(K) = {φ : K |= φ} = first order theory of K

The(K) = Th(K) ∩ {τ -equations} = equational theory of K

Thq(K) = Th(K) ∩ {τ -quasiequations} = quasiequational theory of K

Thq(K) is also called the strict universal Horn theory of K
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Substructures, homomorphisms and products

Let U,V,Vi (i ∈ I ) be structures of type τ and let f , R range over Fτ ,Rτ

U is a substructure of V if U ⊆ V , f U(u1, . . . , un) = f V(u1, . . . , un)
and RU = RV ∩ Un for all u1, . . . , un ∈ U

h : U → V is a homomorphism if h is a function from U to V ,
h(f U(u1, . . . , un)) = f V(h(u1), . . . , h(un)) and
(u1, . . . , un) ∈ RU ⇒ (h(u1), . . . , h(un)) ∈ RV for all u1, . . . , un ∈ U

V is a homomorphic image of U if there exists a surjective
homomorphism h : U ³ V.

U is isomorphic to V, in symbols U ∼= V, if there exists a bijective
homomorphism from U to V.

U =
∏

i∈I Vi , the direct product of structures Vi , if U =
∏

i∈I Vi ,
(f U(u1, . . . , un)i )i∈I = (f Vi (u1i , . . . , uni ))i∈I and
(u1, . . . , un) ∈ RU ⇔ ∀i(u1i , . . . , uni ) ∈ RVi for all u1, . . . , un ∈ U
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Substructures are closed under all operations; give “local information”

Homomorphisms are structure preserving maps, and their images capture
global regularity of the domain structure

Direct products are used to build or decompose bigger structures

A structure with one element is called trivial

A structure is directly decomposable if it is isomorphic to a direct product
of nontrivial structures

A direct product has projection maps πi :
∏

i∈I Vi ³ Vi where πi (u) = ui

Prove (and extend) or disprove (and fix)

For any direct product the projection maps are homomorphisms

Isomorphisms preserve all logically defined properties (not only first-order)
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Varieties and HSP

HK is the class of homomorphic images of members of K

SK is the class of substructures of members of K

PK is the class of direct products of members of K

A variety is of the form Mod(E ) for some set E of equations

A quasivariety is of the form Mod(Q) for some set Q of quasiequations

Prove (and extend) or disprove (and fix)

If K is a quasivariety then SK ⊆ K, PK ⊆ K and HK ⊆ K

The next characterization marks the beginning of universal algebra

Theorem (Birkhoff 1935)

K is a variety iff HK = K, SK = K and PK = K
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Varieties generated by classes

Λτ = {Mod(E ) : E is a set of τ -equations} = set of all τ -varieties

Prove (and extend) or disprove (and fix)

For sets Fi of τ -formulas
⋂

i∈I Mod(Fi ) = Mod(
⋃

i∈I Fi )

Hence Λτ is closed under arbitrary intersections
⋂

Λτ = Mod({x = y}) = the class Oτ of trivial τ -structures

The variety generated by K is VK =
⋂

{all varieties that contain K}

Prove (and extend) or disprove (and fix)

SHK = HSK, PHK = HPK and PSK = SPK for any class K

Theorem (Tarski 1946)

VK = HSPK for any class K of structures
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Complete lattices

For a subset X of a poset U write X ≤ u if x ≤ u for all x ∈ X and
define z =

∑

X if X ≤ u ⇔ z ≤ u (so
∑

X is the least upper bound of X )

u ≤ X and the greatest lower bound
∏

X are defined dually.

Prove (and extend) or disprove (and fix)

If
∑

X exists for every subset of a poset then
∏

X =
∑

{u : u ≤ X}

A structure U with a partial order is complete if
∑

X exists for all X ⊆ U

⇒ every complete join-semilattice is a complete lattice; x · y =
∏

{x , y}

A complete lattice has a bottom 0 =
∑

∅ and a top > =
∏

∅

Prove (and extend) or disprove (and fix)

U with partial order ≤ is complete iff
∏

X exists for all X ⊆ U
Λτ partially ordered by ⊆ is a complete lattice
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Congruences and quotient algebras

A congruence on an algebra A is an equivalence relation θ on A that is
compatible with the operations of A, i.e. for all f ∈ Fn

x1θy1 and . . . and xnθyn ⇒ f A(x1, . . . , xn)θf
A(y1, . . . , yn)

Con(A) is the set of all congruences on A

Prove (and extend) or disprove (and fix)

Con(A) is a complete lattice with
∏

=
⋂

, bottom IA and top A2

For θ ∈ Con(A), the quotient algebra is A/θ = (A/θ, (f A/θ)f ∈Fτ
) where

f A/θ([x1]θ, . . . , [xn]θ) = f A(x1, . . . , xn)

Prove (and extend) or disprove (and fix)

The operations f A/θ are well defined and hθ : A → A/θ given by
hθ(x) = [x ]θ is a surjective homomorphism from A onto A/θ

Peter Jipsen (Chapman University) Relation algebras and Kleene algebra September 4, 2006 39 / 84



Images, kernels and isomorphism theorems

For a function f : A → B the image of f is f [A] = {f (x) : x ∈ A}

The kernel of f is ker f = {(x , y) ∈ A2 : f (x) = f (y)} (an equivalence rel)

Prove (and extend) or disprove (and fix)

If h : A → B is a homomorphism then ker h ∈ Con(A)

h[A] is the underlying set of a subalgebra h[A] of B

The first isomorphism theorem: f : A/ker h ³ h[A] given by
f ([x ]θ) = h(x) is a well defined isomorphism

The second isomorphism theorem: For θ ∈ Con(A), the subset
↑θ = {ψ : θ ⊆ ψ} of Con(A) is isomorphic to Con(A/θ) via the map
ψ 7→ ψ/θ where [x ]ψ/θ[y ] ⇔ xψy
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In a join-semilattice, u is join irreducible if u = x + y ⇒ u ∈ {x , y}

u is join prime if u ≤ x + y ⇒ u ≤ x or u ≤ y

u is completely join irreducible if there is a (unique) greatest element < u

u is completely join prime if u ≤
∑

X ⇒ u ≤ x for some x ∈ X

(completely) meet irreducible and (completely) meet prime are given dually

Prove (and extend) or disprove (and fix)

In complete lattices, u is completely join irreducible iff u =
∑

X ⇒ u ∈ X

Distributivity ⇒ (completely) join irreducible = (completely) join prime

u is compact if u ≤
∑

X ⇒ u ≤ x1 + · · · + xn for some x1, . . . , xn ∈ X

A complete lattice is algebraic if all element are joins of compact elements

Prove (and extend) or disprove (and fix)

Con(A) is an algebraic lattice (hint: compact = finitely generated)
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Subdirect products and subdirectly irreducibles

An embedding is an injective homomorphism

An embedding h : A ↪→
∏

i∈I Bi is subdirect if πi [h[A]] = Bi for all i ∈ I

A is a subdirect product of (Bi )i∈I if there is a subdirect h : A ↪→
∏

i∈I Bi

Prove (and extend) or disprove (and fix)

Define h : A ↪→
∏

i∈I A/θi by h(a) = ([a]θi
)i∈I

Then h is a subdirect embedding iff
⋂

i∈I θi = IA

A is subdirectly irreducible if for any subdirect h : A ↪→
∏

i∈I Bi there is
an i ∈ I such that πi ◦ h is an isomorphism

Prove (and extend) or disprove (and fix)

A is subdirectly irreducible iff IA ∈ Con(A) is completely meet irreducible
iff Con(A) has a smallest nonbottom element
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Meet irreducibles and subdirect representations

Zorn’s Lemma states that if every linearly ordered subposet of a poset has
an upper bound, then the poset itself has maximal elements

Prove (and extend) or disprove (and fix)

In an algebraic lattice all members are meets of completly meet irreducibles

The next result shows that subdirectly irreducibles are building blocks

Theorem (Birkhoff 1944)

Every algebra is a subdirect product of its subdirectly irreducible images

KSI is the class of subdirectly irreducibles of K

⇒ V = SP(VSI) for any variety V
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Filters and ideals
For a poset (U,≤) the principal ideal of x ∈ U is ↓x = {y : y ≤ x}

For X ⊆ U define ↓X =
⋃

x∈X ↓x ; X is a downset if X = ↓X

X is up-directed if x , y ∈ X ⇒ ∃u ∈ X (x ≤ u and y ≤ u)

X is an ideal if X is an up-directed downset

principal filter ↑x , ↑X , upset, down-directed and filter are defined dually

An ideal or filter is proper if it is not the whole poset

An ultrafilter is a maximal (with respect to inclusion) proper filter

A filter X in a join-semilattice is prime if x + y ∈ X ⇒ x ∈ X or y ∈ X

Prove (and extend) or disprove (and fix)

The set Fil(U) of all filters on a poset U is an algebraic lattice
In a join-semilattice every maximal filter is prime
In a distributive lattice every proper prime filter is maximal
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Ultraproducts

F is a filter over a set I if F is a filter in (P(I ),⊆)

F defines a congruence on U =
∏

i∈I Ui via xθFy ⇔ {i ∈ I :xi = yi} ∈ F

U/θF is called a reduced product, denoted by
∏

F Ui

If F is an ultrafilter then U/θF is called an ultraproduct

PuK is the class of all ultraproducts of members of K

K is finitely axiomatizable if K = Mod(φ) for a single formula φ

Prove (and extend) or disprove (and fix)

If K |= φ then PuK |= φ for any first order formula φ

If K is finitely axiomatizable then the complement of K is closed under
ultraproducts

If K is a finite class of finite τ -structures then PuK = K
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Congruence distributivity and Jónsson’s Theorem

A is congruence distributive (CD) if Con(A) is a distributive lattice

A class K of algebras is CD if every algebra in K is CD

Theorem (Jónsson 1967)

If V = VK is congruence distributive then VSI ⊆ HSPuK

Prove (and extend) or disprove (and fix)

If K is a finite class of finite algebras and VK is CD then VSI ⊆ HSK

If A,B ∈ VSI are finite nonisomorphic and V is CD then VA 6= VB

V is finitely generated if V = VK for some finite class of finite algebras

Prove (and extend) or disprove (and fix)

A finitely generated CD variety has only finitely many subvarieties
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Lattices of subvarieties
If Fσ ⊂ Fτ then the Fσ-reduct of a τ -algebra A is A′ = (A, (f A)f ∈Fσ

)

Prove (and extend) or disprove (and fix)

If A′ is a reduct of A then Con(A) is a sublattice of Con(A′)

The variety of lattices is CD, so any variety of algebras with lattice reducts
is CD

For a variety V the lattice of subvarieties is denoted by ΛV

The meet is
⋂

and the join is
∑

i∈I Vi = V(
⋃

i∈I Vi )

Prove (and extend) or disprove (and fix)

For any variety V, ΛV is an algebraic lattice with compact elements =
varieties that are finitely axiomatizable over V

HSPu(K ∪ L) = HSPuK ∪ HSPuL for any classes K,L

If V is CD then ΛV is distributive and the map V 7→ VSI is a lattice
embedding of ΛV into “P(VSI)” (unless VSI is a proper class)
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Simple algebras and the discriminator

A is simple if Con(A) = {IA, A2} i.e. has as few congruences as possible

Prove (and extend) or disprove (and fix)

Any simple algebra is subdirectly irreducible

A is a discriminator algebra if for some ternary term t
A |= x 6= y ⇒ t(x , y , z) = x and t(x , x , z) = z

Prove (and extend) or disprove (and fix)

Any subdirectly irreducible discriminator algebra is simple

V is a discriminator variety if V is generated by a class of discriminator
algebras (for a fixed term t)
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Unary discriminator in algebras with Boolean reduct

A unary discriminator term is a term d in an algebra A with a Boolean
reduct such that d(0) = 0 and x 6= 0 ⇒ d(x) = >

Prove (and extend) or disprove (and fix)

An algebra with a Boolean reduct is a discriminator algebra
iff it has a unary discriminator term
[Hint: let d(x) = t(0, x ,>)− and t(x , y , z) = x · d(x− · y + x · y−) + z · d(x− · y + x · y−)−]

In a concrete relation algebra the term d(x) = >;x ;> is a unary
discriminator term

For a quantifier free formula φ we define a term φt inductively by
(r = s)t = (r− + s) · (r + s−), (φ andψ)t = φt · ψt, (¬φ)t = d((φt)−)

Prove (and extend) or disprove (and fix)

In a discriminator algebra with Boolean reduct φ ⇔ (φt = 1)
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Relation algebras are a discriminator variety

Let Aa = (↓a, +, 0, ·, a,−a , ;a, 1·a, à ) be the relative subalgebra of relation
algebra A with a ∈ A where x−a = x−·a, x ;ay = (x ; y)·a, and x à = x`·a

An element a in a relation algebra is an ideal element if a = >;a;>

Prove (and extend) or disprove (and fix)

Aa is a relation algebra iff a = a` = a;a

For any ideal element a the map h(x) = (x ·a, x ·a−) is an isomorphism
from A to Aa × Aa−

A relation algebra is simple iff it is subdirectly irreducible
iff it is not directly decomposable
iff 0,> are the only ideal elements
iff >;x ;> is a unary discriminator term
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Representable relation algebras

The class RRA of representable relation algebras is SP{Rel(X ):X is a set}

Prove (and extend) or disprove (and fix)

An algebra is in RRA iff it is embeddable in a concrete relation algebra

The class K = S{Rel(X ) : X is a set} is closed under H, S and Pu

[Hint: PuS ⊆ SPu so if A =
∏

U
Rel(Xi ) for some ultrafilter U over I , let Y =

∏

U
Xi , define

h : A → Rel(Y ) by [x]h([R])[y ] ⇔ {i ∈ I : xiRiyi} ∈ U and show h is a well defined embedding]

⇒ (VK)SI ⊆ K by Jónsson’s Theorem

⇒ VK = SPK = RRA by Birkoff’s subdirect representation theorem

⇒ [Tarski 1955] RRA is a variety
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Theorem

[Lyndon 1950] There exist nonrepresentable relation algebras (i.e. /∈ RRA)

[Monk 1969] RRA is not finitely axiomatizable

[Jonsson 1991] RRA cannot be axiomatized with finitely many variables

Outline of nonfinite axiomatizability: There is a sequence of finite relation
algebras An with n atoms and the property that An is representable iff
there exists a projective plane of order n

By a result of [Bruck and Ryser 1949] projective planes do not exist for
infinitely many orders

The ultraproduct of the corresponding sequence of nonrepresentable An is
representable, so the complement of RRA is not closed under ultraproducts

⇒ RRA is not finitely axiomatizable
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Checking if a finite relation algebra is representable
Theorem (Lyndon 1950, Maddux 1983)

There is an algorithm that halts if a given finite relation algebra is not
representable

Lyndon gives a recursive axiomatization for RRA

Maddux defines a sequence of varieties RAn such that
RA = RA4 ⊃ RA5 ⊃ . . .RRA =

⋂

n≥4 RAn and it is decidable if a finite
algebra is in RAn

Implemented as a GAP program [Jipsen 1993]

Comer’s one-point extension method often gives sufficient conditions for
representability; also implemented as a GAP program [J 1993]

Theorem (Hirsch Hodkinson 2001)

Representability is undecidable for finite relation algebras
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Complex algebras

Let U = (U, T ,` , E ) be a structure with T ⊆ U3, ` : U → U, E ⊆ U

The complex algebra Cm(U) is (P(U),∪, ∅,∩, U,− , ;,` , 1) where
X ;Y = {z : (x , y , z) ∈ T for some x ∈ X , y ∈ Y },
X` = {x` : x ∈ X}, and 1 = E

Prove (and extend) or disprove (and fix)

Cm(U) is a relation algebra iff x = y ⇔ ∃z ∈ E (x , z , y) ∈ T,
(x , y , z) ∈ T ⇔ (x`, z , y) ∈ T ⇔ (z , y`, x) ∈ T, and
(x , y , z) ∈ T and (z , u, v) ∈ T ⇒ ∃w((x , w , v) ∈ T and (y , v , w) ∈ T )

An algebra A = (A, ◦,` , e) can be viewed as a structure (A, T ,` , E )
where T = {(x , y , z) : x ◦ y = z} and E = {e}

Prove (and extend) or disprove (and fix)

Cm(A) is a relation algebra iff A is a group
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Atom structures

J(A) denotes the set of completely join irreducible elements of A

Prove (and extend) or disprove (and fix)

In a Boolean algebra J(A) is the set of atoms of A

Every atomic BA is embeddable in P(J(A)) via x 7→ J(A) ∩ ↓x

Every complete and atomic Boolean algebra is isomorphic to P(J(A))

The atom structure of an atomic relation algebra A is (J(A),` , T , E )
where T = {(x , y , z) ∈ J(A) : x ;y ≥ z} and E = J(A) ∩ ↓1

Prove (and extend) or disprove (and fix)

U = (U,` , T , E ) is the atom structure of some atomic relation algebra iff
Cm(U) is a relation algebra

If A is complete and atomic then Cm(J(A)) ∼= A
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Integral and finite relation algebras

A relation algebra is integral if x ;y = 0 ⇒ x = 0 or y = 0

Prove (and extend) or disprove (and fix)

A relation algebra A is integral iff 1 is an atom of A iff x 6= 0 ⇒ x ;> = >

Rel(2) has 4 atoms and is the smallest simple nonintegral relation algebra

Nonintegral RAs can often be decomposed into a “semidirect product” of
integral algebras, so most work has been done on finite integral RAs

For finite relation algebras one usually works with the atom structure

Rel(∅) is the one-element RA; generates the variety O = Mod(0 = >)

Rel(1) is the two-element RA, with 1 = >, x ;y = x · y , x` = x

It generates the variety A1 = Mod(1 = >) of Boolean relation algebras
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Varieties of small relation algebras

Define x s = x + x` and let As have underlying set As = {x s : x ∈ A}

A relation algebra A is symmetric if x = x` (iff As = A)

Prove (and extend) or disprove (and fix)

If A is commutative, then As is a subalgebra of A
There are two RAs with 4 elements: A2 = Cm(Z2) and A3 = (Cm(Z3))

s

The varieties generated by A2 and A3 are denoted A2 and A3

By Jónsson’s Theorem A1, A2 and A3 are atoms of ΛRA

Theorem (Jónsson)

Every nontrivial variety of relation algebras includes A1, A2 or A3
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Group RAs and integral RAs of size 8
A complex algebra of a group is called a group relation algebra

GRA is the variety generated by all group relation algebras

Prove (and extend) or disprove (and fix)

If U is a group then Cm(U) is embedded in Rel(U) via Cayley’s
representation, given by h(X ) = {(u, u ◦ x) : u ∈ U, x ∈ X}

⇒ GRA is a subvariety of RRA

For an algebra A and x ∈ A, SgA(x) is the subalgebra generated by x

There are 10 integral relation algebras with 8 elements, all 1-generated
subalgebras of group relation algebras, hence representable

B1 = SgCmZ4{2} B5 = SgCmZ5{1, 4} C1 = SgCmZ7{1, 2, 4}

B2 = SgCmZ6{2, 4} B6 = SgCmZ8{1, 4, 7} C2 = SgCmQ{r : r > 0}

B3 = SgCmZ6{3} B7 = SgCmZ12{3, 4, 6, 8, 9} C3 = Cm(Z3)

B4 = SgCmZ9{3, 6}
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Integral relation algebras with 4 atoms

The 8-element integral RAs all have A3 as the only proper subalgebra

⇒ they generate join-irreducible varieties above A3

B1, . . . ,B7 are symmetric, C1,C2,C3 are nonsymmetric

[Comer] There are 102 integral 16-element RAs, not all representable

(65 are symmetric, and 37 are not)

[Jipsen Hertzel Kramer Maddux] 31 nonrepresentable (20 are symmetric)

Problem

What is the smallest representable RA that is not in GRA?
Is there one with 16 elements?

There are 34 candidates at www.chapman.edu/∼jipsen/gap/ramaddux.html that are
representable but not known to be group representable
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Summary of basic classes of structures

Qoset = quasiordered sets = sets with a reflexive and transitive relation
Poset = partially ordered sets = antisymmetric quosets
Equiv = equivalence relations = symmetric quosets
Sgrp = semigroups = associative groupoids
Bnd = bands = idempotent (x + x = x) semigroups
Slat = semilattices = commutative bands
JSlat = join-semilattices = semilattices with x ≤ y ⇔ x + y = y
Lat = lattices = two semilattices with absorption laws
Mon = monoids = semigroups with identity x · 1 = x = 1 · x
Mon` = involutive monoids = monoids with x`` = x , (x ·y)` = y`·x`

Grp = groups = involutive monoids with x` · x = 1
JSLat0 = join-semilattices with identity x + 0 = x
Lat0> = bounded lattices = lattices with x + 0 = x and x ·> = >
Lat− = complemented lattices = Lat0> with x + x− = > and x ·x− = 0
DLat = distributive lattices = lattices with x ·(y + z) = x ·y + x ·z
BA = Boolean algebras = complemented distributive lattices
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Some prominent subclasses of semirings

Srng = semirings = monoids distributing over commutative monoids and 0
IS = (additively) idempotent semirings = semirings with x + x = x
`M = lattice-ordered monoids = idempotent semirings with meet
RL = residuated lattices = `-monoids with residuals
KA = Kleene algebra = idempotent semiring with ∗, unfold and induction
KA∗ = ∗-continuous Kleene algebra = KA with ...
KAT = Kleene algebras with tests = KA with Boolean subalgebra ≤ 1
KAD = Kleene algebras with domain
KL = Kleene lattices = Kleene algebras with meet
BM = Boolean monoids = distributive `-monoids with complements
KBM = Kleene Boolean monoids = Boolean monids with Kleene-∗
RA = relation algebras = Boolean monoids with involution and residuals
KRA = Kleene relation algebras = relation algebras with Kleene-∗
RRA = representable relation algebras = concrete relation algebras
RKRA = representable Kleene relation algebras = RRA with Kleene-∗
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Subclasses from combinations of ∗, tests, meet, −, `

IS

KA IST `M IS`

KAT KL `MT KA` IST` `M`

KLT BM KAT` KL` `MT`

KBM KLT` RA

KRA

A = Algebra
B = Boolean
I = Idempotent
K = Kleene
L = Lattice
` = lattice-ordered
M = Monoid
R = Relation
S = Semiring
T = with tests
` = with converse
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Many, but not all, of these classes are varieties

Recall that quasivarietes are classes defined by implications of equations

Most notably, Kleene algebras and some of its subclasses are quasivarieties

In general, implications are not preserved by homomorphic images

To see that KA is not a variety, find an algebra in H(KA) \ KA

Prove (and extend) or disprove (and fix)

Let A be the powerset Kleene algebra of (N, +, 0) and let θ be the
equivalence relation on A with blocks {∅}, {{0}}, {all finite sets 6= {0}, ∅}
and {all infinite subsets}. Then θ is a congruence, but A/θ is not a Kleene
algebra.

Theorem (Mal’cev)

A class K is a quasivariety iff it is closed under S, P and Pu

The smallest quasivariety containing K is QK = SPPuK
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Free algebras

Let K be a class and let F be an algebra that is generated by a set X ⊆ F
(i.e. F has no proper subalgebra that contains X )

F is K-freely generated by X if any f : X → A ∈ K extends to a
homomorphism f̂ : F → A

If also F ∈ K then F is the K-free algebra on X and is denoted by FK(X ).

Prove (and extend) or disprove (and fix)

If K is the class of all τ -algebras then the term algebra Tτ (X ) is the
K-free algebra on X

If K is any class of τ -algebras, let θK =
⋂

{ker h | h : Tτ (X ) → A is a
homomorphism, A ∈ K}. Then F = Tτ (X )/θK is K-freely generated and
if K is closed under subdirect products, then F ∈ K

⇒ free algebras exist in all (quasi)varieties (since they are S, P closed)
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Examples of free algebras

A free algebra on m generators satisfies only those equations with ≤ m
variables that hold in all members of K

FSgrp(X ) ∼=
⋃

n≥1 X n FMon(X ) ∼=
⋃

n≥0 X n x 7→ (x)

These sets of n-tuples are usually denoted by X+ and X ∗

FSlat(X ) ∼= Pfin(X ) \ {∅} FSlat0(X ) ∼= Pfin(X ) x 7→ {x}

FSrng(X ) ∼= {finite multisets of X ∗} FIS(X ) ∼= Pfin(X
∗)

Prove (and extend) or disprove (and fix)

If equality between elements of all finitely generated free algebras is
decidable, then the equational theory is decidable

⇒ the equational theories of Sgrp, Mon, Slat, Srng, IS are decidable
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Free distributive lattices and Boolean algebras

The free algebras for DLat and BA are also easy to describe

FDLat(X ) ∼= Sg
P(P(X ))
DLat (h[X ])

FBA(X ) ∼= Sg
P(P(X ))
BA (h[X ])

where in both cases h(x) = {Y ∈ P(X ) : x ∈ Y } and x 7→ h(x)

For finite X , the free BA is actually isomorphic to P(P(X ))

For lattices, the free algebra on > 3 generators is infinite but the
equational theory is still decidable [Skolem 1928] (in polynomial time)
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Kleene algebras and regular sets

Deciding equations in KA is also possible, but takes a bit more work

Let Σ be a finite set, called an alphabet

The free monoid generated by Σ is Σ∗ = (Σ∗, ·, ε)

Here ε is the empty sequence (), and · is concatenation

The Kleene algebra of regular sets is RΣ = Sg
P(Σ∗)
KA ({{(x)} : x ∈ Σ})

Theorem (Kozen 1994)

RΣ is the free Kleene algebra on Σ

In particular, a regular set is the image of a KA term

So deciding if (s = t) ∈ The(KA) is equivalent to checking if two regular
sets are equal

Membership in regular sets can be determined by finite automata
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Automata

A Σ-automaton is a structure U = (U, (aU)a∈Σ, S , T ) such that aU is a
binary relation for each a ∈ Σ and S , T are unary relations.

Elements of U, S , T are called states, start states and terminal states
respectively

For w ∈ Σ∗ define wU by εU = IU and (a · w)U = aU;wU

The language recognized by U is L(U) = {w ∈ Σ∗ : wU ∩ (S × T ) 6= ∅}

RecΣ is the set of all languages recognized by some Σ-automaton

Prove (and extend) or disprove (and fix)

∅, {ε}, {a} ∈ RecΣ for all a ∈ Σ
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Regular sets are recognizable

A finite automaton can be viewed as a directed graph with states as nodes
and an arrow labelled a from ui to uj iff (ui , uj) ∈ aU

Given automata U,V, define U + V to be the disjoint union of U,V

U;V = (U ] V , (aU ] aV ] (aUTU × SV))a∈Σ, S ′, TV) where

S ′ =

{

SU ifSU ∩ TU = ∅

SU ∪ SV otherwise
and

aUTU = {u : ∃v(u, v) ∈ aU, v ∈ TU}

U+ = (U, (aU ] (aUTU × SU))a∈Σ, SU, TU)

Prove (and extend) or disprove (and fix)

L(U + V) = L(U) ∪ L(V), L(U;V) = L(U); L(V), and L(U+) = L(U)+

⇒ every regular set is recognized by some finite automaton
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Matrices in semirings and Kleene algebras

For a semiring A, let Mn(A) = An×n be the set of n × n matrices over A

Mn(A) is again a semiring with usual matrix addition and multiplication

0 is the zero matrix, and In is the identity matrix

If A is a Kleene algebra and M =

[

N P

Q R

]

∈ Mn(A) define

M∗ =

[

(N + PR∗Q)∗ N∗P(R + QN∗P)∗

R∗Q(N + PR∗Q)∗ (R + QN∗P)∗

]

This is motivated by the diagram:

Prove (and extend) or disprove (and fix)

The definition of M∗ is independent of the chosen decomposition

If A is a Kleene algebra, so is Mn(A)
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Finite automata as matrices
Given U = (U, (aU)a∈Σ, S , T ) with U = {u1, . . . , un} let (s, M, t) be a
0, 1-row n-vector, an n × n matrix and a 0, 1-column n-vector where

si = 1 ⇔ ui ∈ S , Mij =
∑

{a : (ui , uj) ∈ aU}, and ti = 1 ⇔ ui ∈ T

Prove (and extend) or disprove (and fix)

L(U) = h(s; M; t) where h : TKA(Σ) → RΣ is induced by h(x) = {(x)}

⇒ every recognizable language is a regular set [Kleene 1956]

But many different automata may correspond to the same regular set

U is a deterministic automaton if each aU is a function on U and S is a
singleton set

Prove (and extend) or disprove (and fix)

Any nondeterministic automaton U can be converted to a deterministic
one U′ with U ′ = P(U), a′(X ) = {v : (u, v) ∈ aU for some u ∈ X},
S ′ = {S} and T ′ = {X : X ∩ T 6= ∅} such that L(U′) = L(U)
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Minimal automata
A state v is accessible if (u, v) ∈ wU for some u ∈ S and w ∈ Σ∗

In a deterministic automaton, the accessible states are the subalgebra
generated from the start state

Theorem (Myhill, Nerode 1958)

Given a deterministic automaton U with no inaccessible states, the
relation uθv iff ∀w ∈ Σ∗ w(u) ∈ T ⇔ w(v) ∈ T is a congruence on the
automaton and L(U/θ) = L(U)

An automaton is minimal if all states are accessible and the congruence θ
defined in the preceding theorem is the identity relation

Prove (and extend) or disprove (and fix)

Let U,V be minimal automata. Then L(U) = L(V) iff U ∼= V.

⇒ The equational theory of Kleene algebras is decidable

Try it in JFLAP: An Interactive Formal Languages and Automata Package
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Thq((idempotent)semirings) is undecidable

Theorem (Post 1947, Markov 1949)

The quasiequational theory of semigroups is undecidable

For a semigroup A, let A1 be the monoid obtained by adjoining 1

Prove (and extend) or disprove (and fix)

Any semigroup A is a subalgebra of the ;-reduct of P(A)

If K = {;-reducts of semirings} then SK = the class of semigroups

A quasiequation that uses only ; holds in K iff it holds in all semigroups

⇒ the quasiequational theory of (idempotent) semirings is undecidable

Since P(A) is a reduct of KA, KAT, KAD, BM the same result holds
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The equational theory of RA is undecidable

Prove (and extend) or disprove (and fix)

For any semigroup A, the monoid A1 is embedded in the ;-reduct of
Rel(A1) via the Cayley map x 7→ {(x , xy) : y ∈ A1}

If K = {;-reducts of simple RAs} then SK = the class of semigroups

The quasiequational theory of RASI, RA and RRA is undecidable

RA is a discriminator variety, hence any quasiequation (in fact any
quantifier free formula) φ can be translated into an equation φt = 1 which
holds in RA iff φ holds in RASI

⇒ The(RA) is undecidable

Peter Jipsen (Chapman University) Relation algebras and Kleene algebra September 4, 2006 74 / 84



Undecidability is pervasive in ΛRA

Theorem (Andréka Givant Nemeti 1997)

If K ⊆RA such that for each n ≥ 1 there is an algebra in KSI with at least
n elements below the identity then TheK is undecidable

If K ⊆RA such that for each n ≥ 1 there is an algebra in K with a subset
of at least n pairwise disjoint elements that form a group under ; and `

then TheK is undecidable

Prove (and extend) or disprove (and fix)

The varieties of integral RAs, symmetric RAs and group relation algebras
are undecidable
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Summary of decidability and other properties
The dec Thq dec Th dec Var CD loc fin

Sgrp, Mon X × × X × ×

Slat X X × X × X

Lat X X × X X ×

DLat X X × X X X

BA X X X X X X

Grp X × × X × ×

Srng X × × X × ×

IS X × × X × ×

KA, KAT X × × × × ×

KAD × × × × ×

RsKA × × X X ×

RsL X × × X X ×

BM × × × X X ×

RA × × × X X ×

RRA × × × X X ×

KRA × × × X X ×
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Categories

A category is a structure C = (C , O, ◦, 1, dom, cod) such that

C is a class of morphisms, O is a class of objects,
dom, cod : C → O give the domain and codomain,
1 : O → C gives an identity morphism, and
composition ◦ is a partial binary operation on C

1(X ) is denoted 1X , f : X → Y means domf = X and codf = Y

g ◦ f exists iff domg = codf , in which case dom(g ◦ f ) = domf ,
cod(g ◦ f ) = codg and if domg = codh then (f ◦ g) ◦ h = f ◦ (g ◦ h)

dom1X = X = cod1X , 1domf ◦ f = f and f ◦ 1codf = f

The class Hom(X , Y ) = {f : domf = X and codf = Y } is a set

Set is a category with sets as objects and functions as morphisms

Rel is a category with sets as objects and binary relations as morphisms
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Functors
Category theory is well suited for relating areas of mathematics

Functors are structure preserving maps (homomorphisms) of categories

For categories C,D a covariant functor F : C → D maps C → D and
OC → OD such that

F(1X ) = 1FX and if f : X → Y then Ff : FX → FY

if f : X → Y , g : Y → Z then F(g ◦ f ) = Fg ◦ Ff

For a contravariant functor F : C → D the definition becomes

F(1X ) = 1FX and if f : X → Y then Ff : FY → FX

if f : X → Y , g : Y → Z then F(g ◦ f ) = Ff ◦ Fg

Prove (and extend) or disprove (and fix)

A category with one object is (equivalent to) a monoid, and covariant
functors between such categories are monoid homomorphisms
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Heterogeneous relation algebras

The category Rel of typed binary relations is usually enriched by adding
converse and Boolean operation on the sets Hom(X , Y )

In this setting it is also natural to write composition S ◦ R as R;S

A heterogeneous relation algebra (HRA) is a structure
C = (C , O, ;, 1, dom, cod,` , +,>, ·, 0,− ) such that

(C , O, ;, 1, dom, cod) is a category
` : Hom(x , y) → Hom(y , x) satisfies r`` = r , 1`

x = 1x ,
(r ;s)` = s`;r`

for all objects x , y , (Hom(x , y), +,>, ·, 0,− ) is a Boolean algebra and

for all r ;s, t ∈ Hom(x , y), (r ;s)·t = 0 ⇔ (r`;t)·s = 0 ⇔ (t; s`)·r = 0

Prove (and extend) or disprove (and fix)

Relation algebras are (equivalent to) HRAs with one object
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Other enriched categories

Suitably weakening the axioms of HRAs (see e.g. [Kahl 2004]) gives
ordered categories (with converse)
(join/meet)-semilattice categories
(idempotent) semiring categories
Kleene categories (with tests)
(distributive/division) allegories

Given a semiring (A, +, ·), the set Mat(A) = {Am×n : m, n ≥ 1} of all
matrices over A is an important example of a semiring category, with
matrix multiplication as composition

The categorical approach is helpful in applications since it matches well
with typed specification languages
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Conclusion

The foundations of relation algebras and Kleene algebras span a
substantial part of algebra, logic and computer science

Here we have only been able to mention some of the basics, with an
emphasis on concepts from universal algebra

Participants are encouraged to read further in some of the primary sources
and excellent expository works, some of which are listed below

[The following pages have at least one (intensionally) false statement in the “Prove or disprove”
box(es): 8, 10, 11, 23, 36, 37, 49]

The “Prove (and extend) or disprove (and fix)” format is from Ed Burger’s book “Extending the

Frontiers of Mathematics: Inquiries into argumentation and proof”, Key College Press, 2006
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[Desharnais Möller Struth 2003] Kleene algebras with domain, online
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