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Abstract. This note gives an explicit construction of the one-generated
free domain semiring. In particular it is proved that the elements can
be represented uniquely by finite antichains in the poset of finite strictly
decreasing sequences of nonnegative integers. It is also shown that this
domain semiring can be represented by sets of binary relations with
union, composition and relational domain as operations.

1 Introduction

A semiring is an algebra of the form (A,+, 0, ·, 1) such that (A,+, 0) is a com-
mutative monoid, (A, ·, 1) is a monoid, and · distributes over all finite joins from
the left and right (i.e. x(y+z) = xy+xz, (x+y)z = xz+yz and x0 = 0x = 0). A
semiring is idempotent if x + x = x. In this case, (A,+, 0) is a (join-)semilattice
with 0 as bottom element, and · preserves the join-semilattice order (denoted by
≤) in both arguments. The variety of idempotent semirings is denoted by IS.

Let X be a set of variables (or generators). By distributivity, every term t
in the signature of semirings can be written as a finite join of terms of the free
monoid X∗ =

⋃
n∈N

Xn with 1 as the empty sequence and · as concatenation.
Hence the free idempotent semiring over X, denoted by FIS(X), is isomorphic to
the set Pfin(X∗) of all finite subsets of words over the generators, with + given
by union and · given by the complex product U · V = {uv : u ∈ U, v ∈ V }.

Consequently, the equational theory of idempotent semirings is decidable.
However, their quasiequational theory and their uniform word problem are un-
decidable: The uniform word problem for semigroups is known to be undecidable,
and every semigroup S is a subreduct of its powerset semiring P(S).

In this note we consider domain semirings, which are idempotent semirings
with an additional unary operation d that has the properties of a domain op-

eration. Domain semirings have first been introduced in a two-sorted setting
in which the domain operation maps arbitrary semiring elements to a special
Boolean subalgebra [DMS06]. The reason is that arbitrary semiring elements
are intended to model the actions of some program or transition system whereas
the elements of the Boolean subalgebra model the states of that system. This
approach has recently been generalised to a one-sorted setting [DS08] and we
base our considerations on this simpler and more flexible approach.



Our aim is an explicit description of the one-generated free domain semiring
FDS(x). To this end we first describe the one-generated free domain monoid
FDM(x). We then show that these elements are the join irreducibles of FDS(x),
and we describe how they are ordered. Finally we show that FDS(x) is isomorphic
to the set of finite antichains in the poset of join irreducibles.

We conclude with the result that FDS(x) is representable by a concrete alge-
bra of binary relations, with union, empty relation, composition, identity rela-
tion, and relational domain as operations.

Examples of domain semirings are, for instance, reducts of relation algebras
(with d(x) = (x;x`) ∧ 1

,
), as well as reducts of Kleene algebras with domain.

Computationally meaningful models of domain semirings include the idem-
potent semirings of binary relations with domain defined in the standard way;
the idempotent semirings formed by sets of traces of a program (which are alter-
nating sequences of state and action symbols) with domain defined by starting
states of traces; or the idempotent semirings formed by sets of paths in a graph
with domain defined again by sets of starting states [DMS06].

Applications of domain semirings and Kleene algebras with domain have been
intensively studied. First, domain models enabledness conditions for actions in
programs and transition systems. Second, the domain operation can easily be
extended into a modal diamond operator that acts on the underlying algebra
of domain elements [MS06]. This links the algebraic approach with more tradi-
tional logics of programs such as dynamic, temporal and Hoare logics. Also some
standard semantics of programs, including the weakest precondition and weakest
liberal precondition semantics, can be modeled in this setting. Many concrete
applications can be found in this and previous RelMiCS conference proceedings.

The free domain semiring is interesting in these applications since it identi-
fies exactly those terms of domain semirings that have the same denotation in
all domain semirings and because it allows the definition of efficient proof and
decision procedures.

The domain axioms of domain semirings are the same as for relation algebras
and for Kleene algebras with domain, and since both relation algebras and Kleene
algebras have rich and complex (quasi)equational theories, we will independently
study the simpler equational theory of domain semirings in this note. Even in
this setting the n-generated free algebras appear to be fairly complicated, but
at least we are able to handle the one-generated case.

2 Domain Semirings

A domain monoid is an algebra (M, ·, 1, d) such that (M, ·, 1) is a monoid and
d : M → M is a function that satisfies

(D1) d(x)x = x,
(D2) d(xd(y)) = d(xy),
(D3) d(d(x)y) = d(x)d(y), and
(D4) d(x)d(y) = d(y)d(x).



It follows that

d(1) = 1 [take x = 1 in (D1)],
d(d(x)) = d(x) [take y = 1 in (D2)], and
d(x)d(x) = d(x) [take y = x in (D3)].

Hence the set d(M) = {d(x) : x ∈ M} forms a meet semilattice with 1 as top
element.

A domain semiring is an algebra (A,+, 0, ·, 1, d) such that (A,+, 0, ·, 1) is a
semiring, (A, ·, 1, d) is a domain monoid, and the additional axioms

d(x + y) = d(x) + d(y), d(0) = 0 and d(x) + 1 = 1

hold [DS08]. Multiplying the last axiom by x on both sides and applying (D1)
shows that every domain semiring is an idempotent semiring. The varieties of
domain monoids and domain semirings are denoted by DM and DS respectively.

We note that the definition of domain semiring used here is more general than
the notion of δ̂-semiring in [DMS06] since we do not require a test-subsemiring
or a complementation operation on tests.

Note also that every monoid expands to a domain monoid by taking d to be
the constant function 1. Likewise, for any idempotent semiring we can obtain
a domain semiring by defining d(x) = 1 if x 6= 0 and d(0) = 0. Therefore the
quasiequational theory of domain monoids and of domain semirings is undecid-
able.

Lemma 1. (a) In every domain semiring, the axioms (D3) and (D4) are im-

plied by the remaining axioms.

(b) For any domain semiring A, the set d(A) = {d(x) : x ∈ A} forms a distribu-

tive lattice.

Proof. (a) Since d(x + y) = d(x) + d(y) and d(x) + 1 = 1, it follows that d is
order-preserving and d(x) ≤ 1. Hence we use (D1) to calculate

d(x)d(y) = d(d(x)d(y))d(x)d(y) ≤ d(1d(y))d(x)1 = d(y)d(x),

proving (D4). For (D3), we proceed similarly, using (D1) and (D2):

d(x)d(y) = d(d(x)d(y))d(x)d(y)

= d(d(x)y)d(x)d(y)

≤ d(d(x)y)

= d(d(d(x)y))d(d(x)y)

≤ d(x)d(y).

(b) Birkhoff [Bir67] showed that a semiring is a distributive lattice iff it satisfies
x + 1 = 1 and xx = x. Note that d(A) is a subsemiring of A, and these axioms
hold in d(A). ⊓⊔

Proofs of the previous lemma with an automated theorem prover (such as Prover9
[McC07]) can also be found in [DS08].



3 Reduced Terms and Normal Forms

As usual, we define x0 = 1 and xn+1 = xnx.

Lemma 2. In a domain monoid, if m ≤ n then

d(xm)xn = xn and d(xm)d(xn) = d(xn).

Proof. Assuming m ≤ n, we write xn = xmxn−m, and using (D1) we have

d(xm)xn = d(xm)xmxn−m = xmxn−m = xn.

Now (D3) implies d(xm)d(xn) = d(d(xm)xn) = d(xn). ⊓⊔

We now describe a normal form for the elements of FDM(x). For i, j ≥ 0, a
basic term is of the form xid(xj). A concatenation of n basic terms is thus of
the form

xi1d(xj1)xi2d(xj2) · · ·xind(xjn).

Such a term is said to be reduced if jk > ik+1 + jk+1 and ik+1 > 0 for all
k ∈ {1, 2, . . . , n − 1}. In particular, all basic terms are reduced.

Next we show that the domain of a reduced term is easy to determine. To-
gether with the subsequent lemma, it follows that any term in the one-generated
free domain semiring is equivalent to a term that has no nested occurrences of
the domain symbol.

Lemma 3. Let t = xi1d(xj1)xi2d(xj2) · · ·xind(xjn) be a reduced term. Then

d(t) = d(xi1+j1).

Proof. We use induction on n. For n = 1, the result follows from (D2). Suppose
it holds for n − 1, and let s = xi1d(xj1) · · · d(xjn−2)xin−1 . Using (D2) twice we
have

d(t) = d((sd(xjn−1)xin)d(xjn)) = d(sd(xjn−1)xin+jn) = d(sd(d(xjn−1)xin+jn))

and since jn−1 > in + jn we obtain d(t) = d(sd(xjn−1)) from (D3) and the
preceding lemma. By the inductive hypothesis, the last term is just d(xi1+j1),
as required. ⊓⊔

The concatenation of two reduced terms need not be reduced, but the next
lemma shows how to rewrite any such product to reduced form.

Lemma 4. In any domain monoid the following identities hold:

(a) d(xy)xd(yz) = xd(yz),

(b) if 0 ≤ i ≤ j + k then d(xi)xjd(xk) = xjd(xk).



Proof. (a) First we note that (D3) and (D1) yield

d(y)d(yz) = d(d(y)yz) = d(yz)

Using (D2) and (D1) we then obtain

d(xy)xd(yz) = d(xd(y))xd(y)d(yz) = xd(y)d(yz) = xd(yz).

(b) If i ≤ j then the result follows from Lemma 2. So suppose i > j and i ≤ j+k.
Then i − j ≤ k, hence, by the result in (a),

d(xi)xjd(xk) = d(xjxi−j)xjd(xi−jxk−(i−j)) = xjd(xi−jxk−(i−j)).

⊓⊔

Let t = xi1d(xj1)xi2d(xj2) · · ·xind(xjn) be a concatenation of basic terms.
The x-length of t is defined to be

∑n

k=1 ik. Terms with zero x-length are of the
form d(xi), and they are called domain terms. Part (b) of the preceding lemma
can be used to eliminate redundant domain terms in any concatenation of basic
terms, and this is repeated until the term is in reduced normal form. This process
is obviously terminating and it is not hard to see that it has the Church-Rosser
property, that is, it produces the same normal form regardless of the order in
which domain terms are eliminated. Note also that rewriting terms to normal
form preserves the x-length.

The reduced normal form described above, though rather compact, is not
convenient for describing the partial order on the elements of the free domain
monoid. On elements of the form d(xj), the order is induced by the meet-
semilattice structure: d(xj) ≤ d(xk) iff j ≥ k, hence these elements form a
chain (see Fig. 1).

For concatenations of basic terms, we rewrite them in expanded normal form:

d(xj0)xd(xj1)xd(xj2)x · · ·xd(xjm).

where each of the jk are chosen to be as large as possible. This is justified by
using part (b) of the preceding lemma in the reverse direction and with j = 1.
For brevity we denote such a term by the sequence (j0, j1, j2, . . . , jm) and note
that this is always a strictly decreasing sequence of nonnegative integers. Let
P = (P,≤) be the set of all such sequences, ordered by reverse pointwise order.
Thus sequences of different length are not comparable, and the maximal elements
of this poset are

(0), (1, 0), (2, 1, 0), . . .

corresponding to the terms

d(1) = 1, d(x)xd(1) = x, d(x2)xd(x)xd(1) = x2, . . .

A diagram of an initial part of P is shown in Figures 1 and 2. A multiplication
is defined on P by the following “ripple product”

(j0, j1, j2, . . . , jm) · (k0, k1, k2, . . . , kn) = (j′0, j
′

1, j
′

2, . . . , j
′

m, k1, k2, . . . , kn)
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(5, 3) = d(x5)xd(x3)

(4, 2) = d(x4)xd(x2)

(3, 1) = d(x3)xd(x)

Fig. 1. Below 1 and x in the poset of join-irreducibles of FDS(x)

where j′m = max(jm, k0) and j′i = max(ji, j
′

i+1 +1) for i = m− 1, . . . , 2, 1, 0. For
example, (7, 3, 2) · (4, 3, 1) = (7, 5, 4, 3, 1), while (4, 3, 1) · (7, 3, 2) = (9, 8, 7, 3, 2).
The motivation for this definition comes from observing that this is the result if
we multiply the corresponding expanded normal forms and rewrite the product
again in expanded normal form. It is tedious but not difficult to check that this
operation is associative.

The domain of a sequence (j0, j1, j2, . . . , jm) is the length-one sequence (j0),
which corresponds to the domain term d(xj0).

Let A(P) be the set of finite antichains of P. A partial order is defined on
A(P) by a ≤ b iff ↓a ⊆ ↓b.

The multiplication is extended to antichains by using the complex product
(i.e. U · V = {uv : u ∈ U, v ∈ V }) and by removing all non-maximal elements.

4 Two Representation Theorems

We can now prove the main results of this note and show that the one-generated
free domain semiring can be represented either in terms of antichains of integer
sequences or in terms of sets of binary relations.

Theorem 1. The join irreducibles of FDS(x) form a poset that is isomorphic to

P, and FDS(x) is isomorphic to A(P).



Proof. By distributivity, each domain semiring term t(x) can be written as a
finite join of expanded normal form terms. Hence any join irreducible element
of FDS(x) can be represented by an expanded normal form term.

To show that P is the poset of these join irreducible, it suffices to show that all
expanded normal forms are join irreducible, and that two expanded normal form
terms can be distinguished in some domain monoid. We use a domain monoid
of relations for the second part. Let j = (j0, . . . , jm) be a decreasing sequence of
natural numbers, and define a relation Xj on N × N by (u, v)Xj(u

′, v′) iff

(u = u′ and v + 1 = v′ ≤ ju) or (v = v′ = 0 and u + 1 = u′ ≤ m)

Let tj(x) be the term that corresponds to the sequence j. Then it is not hard
to see that ((0, 0), (m, 0)) ∈ tj(Xj) but for any term s that is not above tj in P,
((0, 0), (m, 0)) /∈ s(Xj) (see Fig. 3 for an illustration of Xj).

To prove that the expanded normal form terms are join irreducible, it suf-
fices to show that each such term t is not the join of the elements s1, . . . , sk

immediately below it in P. For this result we consider the relation X that is the
union of all the relations Xj (defined on disjoint base sets), where j ranges over
the sequences that correspond to the terms t, s1, . . . , sk. If we evaluate t and
s1 + · · ·+sk at this relation X, we see that t is strictly bigger, since it contains a
pair from the base of its corresponding relation, which is not contained in si(X)
for any i = 1, . . . , k. ⊓⊔

We now consider the question of representing domain semirings by algebras
of binary relations. We first note that for free idempotent semirings this is al-
ways possible [BS78]. For a set X of generators, a concrete construction can be
obtained by considering the complex algebra of the free group FGrp(X). This
is always a representable relation algebra, with the elements of the group as
disjoint relations. Since the free monoid X∗ is a subset of the free group, the
finite unions of the relations corresponding to singleton words give a relational
representation of the free idempotent semiring with X as set of generators.

However, not all idempotent semirings can be represented by ∪, ◦ semirings
of relations. In fact [And88,And91] showed that the class of algebras of relations,
closed under ∪, ◦, though definable by quasiequations, is not finitely axiomati-
sable, hence it is strictly smaller than the finitely based variety of idempotent
semirings. Similarly the class of algebras of relations closed under ∪, ∅, ◦, id, d,
where d(R) = R;R` ∩ id, is a non-finitely axiomatisable quasivariety, but not a
variety.

Theorem 2. The one-generated free domain semiring can be represented by a

domain semiring of binary relations.

Proof. To see that FDS(x) can be represented by a collection of binary relations,
with operations of union, composition and domain, it suffices to construct a
relation X on a set U such that s(X) 6= t(X) in the relation domain semiring
P(U × U) for any distinct pair of elements of FDS(x). This is done similarly to
the proof of the preceding theorem, by taking X to be the union (over disjoint
base sets) of all the relations Xj corresponding to the sequences j ∈ P.
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Fig. 2. Below x2 in the poset of join-irreducibles of FDS(x)

j = (4, 3, 1)

tj(x) = d(x4)xd(x3)xd(x)
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(0, 2)

(0, 3)

(0, 4)

(2, 1)

Xj = {arrows}

Fig. 3. The term and relation for j = (4, 3, 1)



If s, t are distinct elements of the free domain semiring, then there exists a
join irreducible that is below one of them, say s, but not below t. Let j be the
decreasing sequence that corresponds to the expanded normal form tj for this
join irreducible element. Then tj(Xj) ⊆ s(X) but there is at least one ordered
pair in tj(Xj) that is not contained in t(X), hence s(X) and t(X) are distinct
relations. ⊓⊔

5 Conclusion

So far our analysis has considered only the one-generated free domain semiring.
Even the two-generated case is significantly more complex, since the description
of the join irreducible elements is not so transparent (e.g. a term like d(xd(y)x)
does not appear to be equivalent to a concatenation of basic terms).

Future research is also aiming to describe the structure of free domain semir-
ings in the presence of additional axioms. It has been shown in [DS08] that
the domain algebras d(S) induced by the domain axioms can be turned into
(co-)Heyting algebras or Boolean algebras by imposing further constraints. In
particular, adding the three axioms

a(x)x = 0, a(xy) ≤ a(xa(a(y))) and a(a(x)) + a(x) = 1

for an antidomain function a : S → S to the semiring axioms and defining
domain as d(x) = a(a(x)) suffices to enforce that d(S) is a Boolean algebra and
to recover all theorems of the original two-sorted axiomatisation [DMS06]. Based
on these results, in particular the structure of the free Boolean domain semirings
certainly deserve further investigation.
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