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S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto On the structure of balanced residuated posets 1



Residuated posets

A residuated poset is a structure A = (A,⩽, ·, 1, /, \) such that

(A,⩽) is a poset,

(A, ·, 1) is a monoid,

xy ⩽ z ⇐⇒ x ⩽ z/y ⇐⇒ y ⩽ x\z (res).

=⇒ · is order-preserving in both arguments

/, \ are order-preserving in numerator, order-reversing in denominator

Some examples: (R,⩽,+, 0,−,−op), any ℓ-group,

all groups (where ⩽ is =, x\y = x−1y and x/y = xy−1)

all ∧,∨-free reducts of residuated lattices.

The algebraic semantics of any logic with a fusion, a truth
constant and two implications with a deduction theorem (where ⩽ is ⊢)
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Balanced residuated posets

A residuated poset is balanced if x/x = x\x

idempotent if x2 = x (where x2 = x · x)

integral if x ⩽ 1 (i.e. 1 is the top element)

Example: every commutative residuated lattice is balanced,

every Boolean algebra is idempotent and integral

A residuated lattice is a residuated poset that is a lattice (has ∨,∧).
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The aim of this talk

Decompose (certain) residuated posets into simpler components.

The components are residuated posets with a unique positive
idempotent.

Reconstruction uses P lonka sums of metamorphisms.

Extends structure theory for even/odd involutive FLe-chains
[Jenei 2022],

finite commutative idempotent involutive residuated lattices,
the components are Boolean algebras [Jipsen, Tuyt, Valota 2021],

and locally integral involutive residuated posets, where the
components are integral involutive residuated posets [Gil-Férez,
Jipsen, Lodhia 2023].
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Positive idempotent elements are central

Let Id+(A) = {p ∈ A | 1 ⩽ p = p2} = the set of positive
idempotent elements of A.

The notation 1x is an abbreviation for x/x .

Lemma

In a residuated poset A the following are equivalent:

A is balanced (i.e. x/x = x\x),

p ∈ Id+(A) implies p is central (i.e., for every x, px = xp),

1x is an identity for x (i.e., 1xx = x = x1x).
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Positive idempotents

Lemma

If A is a balanced residuated poset then (Id+(A), ·, 1) is a
join-semilattice with bottom 1 and the order of A agrees with the
join-semilattice order on Id+(A).

Lemma

In a residuated poset A, Id+(A) = {x/x | x ∈ A} = {x\x | x ∈ A}.

Corollary

A residuated poset satisfies ∀x , x/x = 1 ⇐⇒ ∀x , x\x = 1.
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An important equivalence relation

Define x ≡ y ⇐⇒ 1x = 1y .

Then ≡ is an equivalence relation.

Let Ax = {y ∈ A | 1x = 1y} be the equivalence classes.

For a residuated poset A the equivalence classes Ax are called the
local components of A.
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Decomposable residuated posets

A residuated poset is semilattice decomposable if

1x = 1y =⇒ 1x\y = 1x .

Lemma

A semilattice decomposable residuated poset is balanced and

satisfies 1x = 1y =⇒ 1xy = 1x and 1x = 1y =⇒ 1x/y = 1x .

Examples: All commutative idempotent residuated posets.

A RP is involutive if 0/(x\0) = (0/x)\0 for some constant 0.

[Gil-Férez, J., Lodhia] all locally integral involutive residuated
posets are decomposable.
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The decomposition theorem

Theorem

Every decomposable residuated poset A is a disjoint union of
residuated posets Ap = (Ap,⩽p, ·p, 1p, \p, /p) where

p ranges over the join-semilattice (Id+(A),⩽, ·),

p = 1p is the unique positive idempotent of Ap and

⩽p, ·p, \p, /p are the restrictions of ⩽, ·, \, / to Ap.

Proof.

Suppose A is decomposable and let p ∈ Id+(A), so p = 1p.

Then A is balanced, so p is a left and right identity on Ap.

For x , y ∈ Ap we have 1x = p = 1y ,

so the preceding lemma implies 1xy = 1x and 1x/y = 1x = p.

Therefore xy , x/y ∈ Ap, so the Ap are residuated posets.
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A diagram of the decomposition into local components

Each component Ap intersects Id+(A) in a unique element 1x = p.

The Ap are integral ⇐⇒ A is square-decreasing (x · x ⩽ x).

p

1

q

p∨q

pq

p q

1

Id+(A)

A1 Ap Aq Apq · · ·

A
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A six-element decomposable example

(A,⩽)

q
p

b1
a

⊥
(A, ·)

1
p

a q

b
⊥

The left poset (A,⩽) can be equipped with a commutative
idempotent multiplication, i.e., the meet operation of the right poset.

This multiplication preserves all joins of (A,⩽), hence is residuated.

This gives a residuated poset A, where Id+(A) = {1, p, q} and
A1 = {1, a}, Ap = {p}, and Aq = {q, b,⊥}.

These sets are closed under residuals, hence A is decomposable.
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Reconstructing RPs from local components

In many cases the original residuated poset can be reconstructed
from the local components and two families of maps:

φpq, ψpq : Ap → Aq for p ⩽ q ∈ Id+(A).

The maps are defined by φpq(x) = qx and ψpq(x) = q\x .

Reconstructing the monoid operation uses a P lonka sum.

Reconstructing the order and residuals requires a generalization.
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Brief review of P lonka sums

Let I = (I ,∨) be a join semilattice of indices.

A semilattice directed system Φ = {φij : Ai → Aj : i ⩽ j in I} is
a family of homomorphisms between algebras of the same type if
φii is the identity on Ai and φjk ◦ φij = φik , for all i ⩽ j ⩽ k.

If the algebras contain constants, assume I has a least element ⊥.

The P lonka sum of a semilattice directed system Φ is an algebra
S of the same type defined on the disjoint union of the universes
S =

⊎
i∈I Ai .

For every n-ary operation symbol σ and a1 ∈ Ai1 , . . . , an ∈ Ain ,

σS(a1, . . . , an) = σAj (φi1j(a1), . . . , φinj(an)),

where j = i1∨ · · · ∨ in, and for every constant symbol ω, ωS = ωA⊥ .
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Metamorphisms between algebras

Let A,B be algebras with operation symbols σ ∈ O.

A metamorphism h : A ↬ B is a sequence of functions
hσ = (hσ0, . . . , hσn) for each n-ary symbol σ ∈ O such that

hσ0(σA(a1, . . . , an)) = σB(hσ1(a1), . . . , hσn(an)).

In particular, for every constant ω, f ω = (f ω0) and f ω0(ωA) = ωB.

Every homomorphism g : A → B gives rise to a metamorphism
hσ = (g , . . . , g), and algebras of the same type form a category
with componentwise composition of metamorphisms:

If h : A ↬ B and k : B ↬ C then k ◦ h : A ↬ C is defined by
(k ◦ h)σ = (kσ0 ◦ hσ0, . . . , kσn ◦ hσn).

The identity metamorphism is id : A ↬ A, idσ = (idA, . . . , idA).

S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto On the structure of balanced residuated posets 14



P lonka sum of metamorphisms

A semilattice directed system of metamorphisms is a family
H = {hpq : Ap ↬ Aq : p ⩽ q in I} such that hpp = idAp and
hqr ◦ hpq = hpr .

The P lonka sum of a directed system of metamorphisms H is
the algebra A whose universe is A =

⊎
Ap, and such that for every

n-ary operation σ and all a1 ∈ Ap1 , . . . , an ∈ Apn ,

σA(a1, . . . , an) = σAq(hσ1p1q(a1), . . . , hσnpnq(an)),

where q = p1 ∨ · · · ∨ pn.

If the type τ contains a constant symbol ω, then we assume that I
has a least element ⊥ and ωA = ωA⊥ .
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Reconstructing P lonka decomposable residuated posets

A residuated poset is P lonka decomposable if it satisfies

1xy = 1x\y = 1x/y = 1x · 1y .

For p ⩽ q ∈ Id+(A) define φpq, ψpq : Ap → Aq by

φpq(x) = qx and ψpq(x) = q\x .

Theorem

The algebraic reduct of a P lonka decomposable residuated poset A
is the P lonka sum of the directed system of metamorphisms
H = {hpq : Ap ↬ Aq : p ⩽ q in I} given by

h1
pq = (φpq), h·

pq = (φpq, φpq, φpq),

h
\
pq = (ψpq, φpq, ψpq), h

/
pq = (ψpq, ψpq, φpq).

Moreover, for all p, q ∈ I , a ∈ Ap, and b ∈ Aq,

a ⩽ b ⇐⇒ φps(a) ⩽s ψqs(b), where s = pq.
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Sums of posets

Let I = (I ,∨) be a join-semilattice and (Φ,Ψ) a pair of directed
systems of monotone maps Φ = {φpq : Ap → Aq : p ⩽ q in I} and
Ψ = {ψpq : Ap → Aq : p ⩽ q in I}.

Define the relation ⩽ on A =
⊎

Ap as follows: for all p, q ∈ I ,
a ∈ Ap, and b ∈ Aq,

a ⩽ b ⇐⇒ φps(a) ⩽s ψqs(b), where s = p ∨ q.

In general, this relation is not a partial order, but it will be if the
following three conditions are satisfied. In that case, we call (A,⩽)
the sum of the family of posets {Ap : p ∈ I} over (Φ,Ψ).

(O1) if p < q then ψpq <q φpq pointwise,

(O2) if p ⩽ q, r and t = q ∨ r , then φqtψpq ⩽t ψrtφpr pointwise,

(O3) for all a, b ∈ Ap and p ⩽ q, if φpq(a) ⩽q ψpq(b), then a ⩽p b.
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Construction of posets from components

Ap

φ

ψ

(O1)

Aq
<

Ap

Aq

φ

ψ

ψ

φ

(O2)

Ar
Aq∨r

⩽

Ap

ψ

φ

(O3)

Aq

≰≰

Theorem

Given a pair (Φ,Ψ) of directed systems of monotone maps, the
relation ⩽ defined by

a ⩽ b ⇐⇒ φps(a) ⩽s ψqs(b), where s = p ∨ q.

is a partial order extending the order of each poset if and only if
(Φ,Ψ) satisfies (O1)–(O3).
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Construction of P lonka decomposable residuated posets

Construction Theorem

Let {Ap : p ∈ I} be a family of residuated posets indexed on a join
semilattice I = (I ,∨) with least element ⊥ and Φ,Ψ a pair of
semilattice directed systems of monotone maps such that
H = {hpq : Ap ↬ Aq : p ⩽ q in I} is a directed system of
metamorphisms defined by

h1
pq = (φpq), h·

pq = (φpq, φpq, φpq),

h
\
pq = (ψpq, φpq, ψpq), h

/
pq = (ψpq, ψpq, φpq).

and (Φ,Ψ) satisfies (O1)–(O3). Then the P lonka sum of H
together with the sum of the poset reducts over (Φ,Ψ) is a
residuated poset.
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Application to involutive residuated posets

An involutive residuated poset, or InRP, is a structure of the
form A = (A,⩽, ·, 1,∼,−) such that (A,⩽) is a poset and (A, ·, 1)
is a monoid satisfying

x ⩽ y ⇐⇒ x · ∼y ⩽ −1 ⇐⇒ −y · x ⩽ −1. (ineg)

The monoid operation is residuated with residuals defined by
x\y = ∼(−y · x) and x/y = −(y · ∼x).

An ipo-monoid A is locally integral if it is balanced, and it
satisfies x ⩽ 1x and x\1x = 1x , where 1x = x/x = −(x · ∼x).
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P lonka sums of InRP

The metamorphisms are determined by the two families of maps

φpq(x) = 1q · x = q · x and

ψpq(x) = ∼(−x · 1q) = q\x = ∼φpq(−x).

Hence every locally integral InRP is a P lonka sum, and its order
can be recovered by

a ⩽ b ⇐⇒ φps(a) ⩽s ψqs(b), where s = p ∨ q.

This is the structure theory originally obtained in an ad hoc
manner in [Gil-Férez, J., Lodhia 2023].

a ⩽ b ⇐⇒ φps(a) ·s φps(∼b) = 0s , where s = p ∨ q.
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Example: P lonka sum of two residuated posets

Let A1 and A2 be two residuated posets, with two directed
systems Φ = {φpq : p ⩽ q} and Ψ = {ψpq : p ⩽ q}, indexed over
the 2-element chain 1 < 2, such that the nonidentity maps
φ12, ψ12 : A1 → A2 are defined by

a 7→ φ12(a) = 1A2 and a 7→ ψ12(a) = 0,

with 0 a fixed element in A2 such that 0 < 1A2 .

A1 A2

0

1A2

Then (Φ,Ψ) satisfies the conditions of the Construction
Theorem, hence we obtain a residuated poset S = A1 ⊎ A2.
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When will the construction produce a residuated lattice?

In general this is an open problem, but for the two-component P lonka
sum it suffices if A1 is a (chopped) lattice and A2 is a lattice.

Join and meet are defined as follows:

a ∨S b =



a ∨A b if a, b ∈ A have an upper bound in A

1B if a, b ∈ A have no upper bound in A

a ∨B b if a, b ∈ B

a if a ∈ A, b ∈ B with b ⩽ 0

b ∨B 1B if a ∈ A, b ∈ B with b ̸⩽ 0,

a ∧S b =



a ∧A b if a, b ∈ A have a lower bound in A

0 if a, b ∈ A have no lower bound in A

a ∧B b if a, b ∈ B

a if a ∈ A, b ∈ B with 1B ⩽ b

b ∧B 0 if a ∈ A, b ∈ B with 1B ̸⩽ b.
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Example of a 4-element relation algebra

For any monoid M = (M, ·, e) the complex algebra P(M) is the
residuated lattice (P(M),∩,∪, ·, \, /, {e}), where for all X ,Y ⊆ M,

X · Y = {xy : x ∈ X , y ∈ Y },

X\Y = {z ∈ M : X ·{z} ⊆ Y } and X/Y = {z ∈ M : {z}·Y ⊆ X}.

The previous two-component P lonka sum can be used for the
4-element relation algebra P(Z2) where Z2 is the 2-element group.

P(Z2)

⊤
01

⊥
Z2 2

01 ⊎
⊤

⊥

This relation algebra is not locally integral, but it is P lonka
decomposable, and the P lonka sum decomposition can be applied
to all members of the variety of relation algebras generated by P(Z2).
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How good is this structure theory?

The table below shows how many P lonka decomposable residuated
posets can be built from indecomposable residuated posets (i.e.
ones with a unique positive idempotent).

Cardinality n = 1 2 3 4 5 6 7 8

Residuated posets (RP) 1 2 5 28 186 1795
Residuated lattices 1 1 3 20 149 1488 18554 295292
Slat. decomposable RP 1 2 5 24 134 1029
P lonka decomposable RP 1 2 5 23 121 889
Unique pos. idem. RP 1 2 4 16 72 516
Com. idem. P l. decomp. RP 1 1 2 5 13 36 107
Idempotent integral RP 1 1 1 2 3 5 8 15

E.g., for commutative idempotent P lonka decomposable residuated
posets, 99 seven-element RPs can be constructed from 13
indecomposable components.
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