On the structure of balanced residuated posets

Peter Jipsen

Joint work with Stefano Bonzio, José Gil-Férez, Adam Prenosil and Melissa Sugimoto

Topology, Algebra, Categories in Logic TACL 2024

1 July 2024

University of Barcelona, Spain

S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto On the structure of balanced residuated posets 1

Residuated posets

A residuated poset is a structure $\mathbf{A} = (A, \leq, \cdot, 1, /, \setminus)$ such that

- \bullet (A, \leqslant) is a poset,
- \bullet $(A, \cdot, 1)$ is a monoid,
- $xy \leq z \iff x \leq z/y \iff y \leq x \leq z$ (res).

 \implies \cdot is order-preserving in both arguments

 $\langle \cdot, \cdot \rangle$ are order-preserving in numerator, order-reversing in denominator **Some examples:** $(\mathbb{R}, \leq, +, 0, -, -^{op})$, any ℓ -group, all **groups** (where \leqslant is $=$, $x \backslash y = x^{-1}y$ and $x/y = xy^{-1}$)

all ∧, ∨-free reducts of residuated lattices.

The algebraic semantics of any logic with a fusion, a truth constant and two implications with a deduction theorem (where \leq is \vdash)

Balanced residuated posets

A residuated poset is **balanced** if $x/x = x\{x\}$

idempotent if $x^2 = x$ (where $x^2 = x \cdot x$)

integral if $x \le 1$ (i.e. 1 is the top element)

Example: every commutative residuated lattice is balanced,

every Boolean algebra is idempotent and integral

A residuated lattice is a residuated poset that is a lattice (has \vee , \wedge).

Decompose (certain) residuated posets into simpler components.

The components are residuated posets with a **unique positive** idempotent.

Reconstruction uses Ptonka sums of metamorphisms.

Extends structure theory for **even/odd involutive** FL_e **-chains** [Jenei 2022],

finite commutative idempotent involutive residuated lattices, the components are Boolean algebras [Jipsen, Tuyt, Valota 2021],

and locally integral involutive residuated posets, where the components are **integral** involutive residuated posets [Gil-Férez, Jipsen, Lodhia 2023].

Positive idempotent elements are central

Let $\mathit{Id}^+(\mathsf{A})=\{p\in A\mid 1\leqslant p=p^2\}=\text{the set of positive}\}$ idempotent elements of A.

The notation 1_x is an abbreviation for x/x .

Lemma

In a residuated poset A the following are equivalent:

• A is balanced (i.e.
$$
x/x = x\backslash x
$$
),

$$
\bullet\ \ p\in \mathsf{Id}^+(\mathsf{A})\ \mathsf{implies}\ p\ \mathsf{is}\ \mathsf{central}\ (\mathsf{i.e.},\ \mathsf{for}\ \mathsf{every}\ \mathsf{x},\ \ \mathsf{px}=\mathsf{x}\mathsf{p}),
$$

•
$$
1_x
$$
 is an identity for x (i.e., $1_x x = x = x 1_x$).

Lemma

If **A** is a balanced residuated poset then $(\mathsf{Id}^+(\mathsf{A}), \cdot, 1)$ is a join-semilattice with bottom 1 and the order of A agrees with the join-semilattice order on $Id^+(\mathbf{A})$.

Lemma

In a residuated poset **A**, $Id^+(\mathbf{A}) = \{x/x \mid x \in A\} = \{x \mid x \mid x \in A\}.$

Corollary

A residuated poset satisfies $\forall x, x/x = 1 \iff \forall x, x \exists x = 1$.

Define $x \equiv y \iff 1_x = 1_y$.

Then \equiv is an equivalence relation.

Let
$$
A_x = \{y \in A \mid 1_x = 1_y\}
$$
 be the equivalence classes.

For a residuated poset **A** the equivalence classes A_x are called the local components of A.

Decomposable residuated posets

A residuated poset is semilattice decomposable if

$$
1_x = 1_y \implies 1_{x \setminus y} = 1_x.
$$

Lemma

A semilattice decomposable residuated poset is balanced and

satisfies
$$
1_x = 1_y \implies 1_{xy} = 1_x
$$
 and $1_x = 1_y \implies 1_{x/y} = 1_x$.

Examples: All **commutative idempotent** residuated posets.

A RP is **involutive** if $0/(x\backslash 0) = (0/x)\backslash 0$ for some constant 0.

[Gil-Férez, J., Lodhia] all locally integral *involutive residuated* posets are decomposable.

The decomposition theorem

Theorem

Every decomposable residuated poset A is a disjoint union of residuated posets $\mathbf{A}_p = (A_p, \leqslant_p, \cdot_p, 1_p, \setminus_p, /_p)$ where p ranges over the join-semilattice $(id^+(\mathbf{A}), \leq, \cdot)$, $p = 1_p$ is the unique positive idempotent of A_p and $\{\xi_p, \cdot_p, \cdot_p, \cdot_p, \cdot_p\}$ are the restrictions of $\{\xi, \cdot, \cdot\}$, to A_p .

Proof.

Suppose **A** is decomposable and let $p \in \text{Id}^+(\mathbf{A})$, so $p = 1_p$. Then **A** is balanced, so p is a left and right identity on A_n . For $x, y \in A_n$ we have $1_x = p = 1_y$, so the preceding lemma implies $1_{xy} = 1_x$ and $1_{x/y} = 1_x = p$. Therefore xy , $x/y \in A_p$, so the A_p are residuated posets. \Box

A diagram of the decomposition into local components

Each component A_p intersects $\mathbf{Id}^+(\mathbf{A})$ in a **unique** element $1_x = p$. The A_p are integral \iff A is square-decreasing $(x \cdot x \leq x)$.

A six-element decomposable example

The left poset (A, \leq) can be equipped with a commutative idempotent multiplication, i.e., the meet operation of the right poset.

This multiplication preserves all joins of (A, \leq) , hence is residuated.

This gives a residuated poset **A**, where $Id^+(\mathbf{A}) = \{1, p, q\}$ and $A_1 = \{1, a\}, A_p = \{p\}, \text{ and } A_q = \{q, b, \perp\}.$

These sets are closed under residuals, hence A is decomposable.

In many cases the original residuated poset can be reconstructed from the local components and two families of maps:

$$
\varphi_{pq}, \psi_{pq}: \mathbf{A}_p \to \mathbf{A}_q \text{ for } p \leqslant q \in \mathit{Id}^+(\mathbf{A}).
$$

The maps are defined by $\varphi_{pq}(x) = qx$ and $\psi_{pq}(x) = q \backslash x$.

Reconstructing the monoid operation uses a **Pronka sum**.

Reconstructing the order and residuals requires a generalization.

Let $\mathbf{l} = (l, \vee)$ be a join semilattice of **indices**.

A semilattice directed system $\Phi = \{\varphi_{ij}\colon \mathbf{A}_i \to \mathbf{A}_j : i \leqslant j \text{ in } \mathsf{I}\}$ is a family of homomorphisms between algebras of the same type if φ_{ii} is the identity on \mathbf{A}_i and $\varphi_{ik} \circ \varphi_{ii} = \varphi_{ik}$, for all $i \leqslant j \leqslant k$.

If the algebras contain constants, assume I has a least element \perp .

The **Pronka sum** of a semilattice directed system Φ is an algebra S of the same type defined on the disjoint union of the universes $S = \biguplus_{i \in I} A_i$.

For every *n*-ary operation symbol σ and $a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}$,

$$
\sigma^{\mathsf{S}}(a_1,\ldots,a_n)=\sigma^{\mathsf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n)),
$$

where $j=i_1\vee\cdots\vee i_n$, and for every constant symbol ω , $\omega^{\mathsf{S}}=\omega^{\mathsf{A}_\perp}.$

Let **A**, **B** be algebras with operation symbols $\sigma \in \mathcal{O}$.

A **metamorphism** $h : \mathbf{A} \oplus \mathbf{B}$ is a sequence of functions $h^{\sigma} = (h^{\sigma 0}, \ldots, h^{\sigma n})$ for each *n*-ary symbol $\sigma \in \mathcal{O}$ such that

$$
h^{\sigma 0}(\sigma^{\mathbf{A}}(a_1,\ldots,a_n))=\sigma^{\mathbf{B}}(h^{\sigma 1}(a_1),\ldots,h^{\sigma n}(a_n)).
$$

In particular, for every constant ω , $f^\omega = (f^{\omega 0})$ and $f^{\omega 0}(\omega^\mathbf{A}) = \omega^\mathbf{B}$.

Every homomorphism $g : A \rightarrow B$ gives rise to a **metamorphism** $h^{\sigma}=(g,\ldots,g)$, and algebras of the same type form a category with componentwise composition of metamorphisms:

If h: $A \rightarrow B$ and k: $B \rightarrow C$ then $k \circ h$: $A \rightarrow C$ is defined by $(k \circ h)^{\sigma} = (k^{\sigma 0} \circ h^{\sigma 0}, \dots, k^{\sigma n} \circ h^{\sigma n}).$

The **identity** metamorphism is $id: \mathbf{A} \oplus \mathbf{A}$, $id^{\sigma} = (id^{A}, \dots, id^{A})$.

Płonka sum of metamorphisms

A semilattice directed system of metamorphisms is a family $\mathcal{H} = \{h_{pq} : \mathbf{A}_p \leftrightarrow \mathbf{A}_q : p \leq q \text{ in } \mathbb{I}\}\$ such that $h_{np} = id^{\mathbf{A}_p}$ and $h_{\alpha r} \circ h_{\alpha q} = h_{\alpha r}$.

The Ptonka sum of a directed system of metamorphisms H is the algebra **A** whose universe is $A=\biguplus A_\rho,$ and such that for every *n*-ary operation σ and all $a_1 \in A_{p_1}, \ldots, a_n \in A_{p_n}$,

$$
\sigma^{\mathsf{A}}(a_1,\ldots,a_n)=\sigma^{\mathsf{A}_{q}}(h^{\sigma 1}_{p_1q}(a_1),\ldots,h^{\sigma n}_{p_nq}(a_n)),
$$

where $q = p_1 \vee \cdots \vee p_n$.

If the type τ contains a constant symbol ω , then we assume that **I** has a least element \bot and $\omega^{\mathsf{A}} = \omega^{\mathsf{A}_\bot}.$

Reconstructing Plonka decomposable residuated posets

A residuated poset is **Płonka decomposable** if it satisfies

$$
1_{xy} = 1_{x/y} = 1_{x/y} = 1_x \cdot 1_y.
$$

For $p \le q \in Id^+(\mathbf{A})$ define $\varphi_{pq}, \psi_{pq} : \mathbf{A}_p \to \mathbf{A}_q$ by
 $\varphi_{pq}(x) = qx$ and $\psi_{pq}(x) = q \backslash x$.

Theorem

The algebraic reduct of a Ptonka decomposable residuated poset A is the Płonka sum of the directed system of metamorphisms $\mathcal{H} = \{h_{\text{p,q}} : \mathbf{A}_{\text{p}} \leftrightarrow \mathbf{A}_{\text{q}} : \text{p} \leqslant \text{q in } \mathbb{I}\}\$ given by

$$
h_{pq}^1 = (\varphi_{pq}), \qquad h_{pq}^1 = (\varphi_{pq}, \varphi_{pq}, \varphi_{pq}),
$$

\n
$$
h_{pq}^1 = (\psi_{pq}, \varphi_{pq}, \psi_{pq}), \qquad h_{pq}^j = (\psi_{pq}, \psi_{pq}, \varphi_{pq}).
$$

Moreover, for all $p, q \in I$, $a \in A_p$, and $b \in A_q$,

$$
a \leqslant b \quad \iff \quad \varphi_{\rho s}(a) \leqslant_s \psi_{\sigma s}(b), \quad \text{where } s = pq.
$$

Sums of posets

Let $I = (I, \vee)$ be a join-semilattice and (Φ, Ψ) a pair of directed systems of monotone maps $\Phi = {\varphi_{\rho q} : \mathbf{A}_{p} \to \mathbf{A}_{q} : p \leqslant q \text{ in } \mathbf{I}}$ and $\Psi = {\psi_{pq} : \mathbf{A}_p \to \mathbf{A}_q : p \leq q \text{ in } \mathbf{I}}.$

Define the relation \leqslant on $A = \biguplus A_{p}$ as follows: for all $p, q \in I$, $a \in A_n$, and $b \in A_n$,

$$
\mathsf{a} \leqslant \mathsf{b} \quad \iff \quad \varphi_{\mathsf{ps}}(\mathsf{a}) \leqslant_{\mathsf{s}} \psi_{\mathsf{qs}}(\mathsf{b}), \quad \text{where } \mathsf{s} = \mathsf{p} \vee \mathsf{q}.
$$

In general, this relation is not a partial order, but it will be if the following three conditions are satisfied. In that case, we call (A, \leq) the sum of the family of posets $\{A_p : p \in I\}$ over (Φ, Ψ) .

(O1) if $p < q$ then $\psi_{pq} < q \varphi_{pq}$ pointwise,

(02) if
$$
p \leq q
$$
, r and $t = q \vee r$, then $\varphi_{qt} \psi_{pq} \leq_t \psi_{rt} \varphi_{pr}$ pointwise,

(O3) for all $a, b \in A_p$ and $p \leq q$, if $\varphi_{pq}(a) \leq q \psi_{pq}(b)$, then $a \leq p b$.

Construction of posets from components

Theorem

Given a pair (Φ, Ψ) of directed systems of monotone maps, the relation \leqslant defined by

 $a \leq b \iff \varphi_{\text{ps}}(a) \leqslant_{s} \psi_{\text{qs}}(b), \text{ where } s = p \vee q.$

is a partial order extending the order of each poset if and only if (Φ, Ψ) satisfies (01) – (03) .

Construction Theorem

Let $\{A_p: p \in I\}$ be a family of residuated posets indexed on a join semilattice $\mathbf{I} = (I, \vee)$ with least element \perp and Φ , Ψ a pair of semilattice directed systems of monotone maps such that $\mathcal{H} = \{h_{pq} : \mathbf{A}_p \oplus \mathbf{A}_q : p \leq q \text{ in } \mathbb{I}\}\$ is a directed system of metamorphisms defined by

$$
h_{pq}^1 = (\varphi_{pq}), \qquad h_{pq}^1 = (\varphi_{pq}, \varphi_{pq}, \varphi_{pq}),
$$

\n
$$
h_{pq}^1 = (\psi_{pq}, \varphi_{pq}, \psi_{pq}), \qquad h_{pq}^j = (\psi_{pq}, \psi_{pq}, \varphi_{pq}).
$$

and (Φ, Ψ) satisfies $(O1)$ – $(O3)$. Then the Płonka sum of $\mathcal H$ together with the sum of the poset reducts over (Φ, Ψ) is a residuated poset.

An involutive residuated poset, or InRP, is a structure of the form $A = (A, \leq, \cdot, 1, \sim, -)$ such that (A, \leq) is a poset and $(A, \cdot, 1)$ is a monoid satisfying

$$
x \leq y \iff x \cdot \sim y \leq -1 \iff -y \cdot x \leq -1. \qquad \text{(ineg)}
$$

The monoid operation is residuated with residuals defined by $x\backslash y = \sim(-y \cdot x)$ and $x/y = -(y \cdot \sim x)$.

An ipo-monoid **A** is **locally integral** if it is balanced, and it satisfies $x \leq 1_x$ and $x \setminus 1_x = 1_x$, where $1_x = x/x = -(x \cdot \sim x)$.

Płonka sums of InRP

The metamorphisms are determined by the two families of maps

$$
\varphi_{pq}(x) = 1_q \cdot x = q \cdot x
$$
 and

$$
\psi_{pq}(x) = \sim(-x \cdot 1_q) = q\backslash x = \sim \varphi_{pq}(-x).
$$

Hence every locally integral InRP is a Płonka sum, and its order can be recovered by

$$
a\leqslant b\quad\iff\quad\varphi_{\text{ps}}(a)\leqslant_{s}\psi_{\text{qs}}(b),\quad\text{where }s=p\vee q.
$$

This is the structure theory originally obtained in an ad hoc manner in [Gil-Férez, J., Lodhia 2023].

$$
\mathsf{a} \leqslant \mathsf{b} \quad \iff \quad \varphi_{\mathsf{ps}}(\mathsf{a}) \cdot_{\mathsf{s}} \varphi_{\mathsf{ps}}(\sim \mathsf{b}) = \mathsf{0}_{\mathsf{s}}, \quad \text{where } \mathsf{s} = \mathsf{p} \vee \mathsf{q}.
$$

Example: Plonka sum of two residuated posets

Let A_1 and A_2 be two residuated posets, with two directed systems $\Phi = {\varphi_{pq} : p \leq q}$ and $\Psi = {\psi_{pq} : p \leq q}$, indexed over the 2-element chain $1 < 2$, such that the nonidentity maps $\varphi_{12}, \psi_{12} : A_1 \rightarrow A_2$ are defined by

$$
a\mapsto \varphi_{12}(a)=1^{\mathbf{A}_2} \quad \text{and} \quad a\mapsto \psi_{12}(a)=0,
$$

with 0 a fixed element in A_2 such that 0 $<$ 1 $^{{\sf A}_2}.$

Then (Φ, Ψ) satisfies the conditions of the **Construction Theorem**, hence we obtain a residuated poset $S = A_1 \oplus A_2$.

When will the construction produce a residuated lattice?

In general this is an open problem, but for the two-component Plonka sum it suffices if A_1 is a (chopped) lattice and A_2 is a lattice. Join and meet are defined as follows:

$$
a \vee^{S} b = \begin{cases} a \vee^{A} b & \text{if } a, b \in A \text{ have an upper bound in } A \\ 1^{B} & \text{if } a, b \in A \text{ have no upper bound in } A \\ a \vee^{B} b & \text{if } a, b \in B \\ a & \text{if } a \in A, b \in B \text{ with } b \leq 0 \\ b \vee^{B} 1^{B} & \text{if } a \in A, b \in B \text{ with } b \not\leq 0, \end{cases}
$$

$$
a \wedge^{S} b = \begin{cases} a \wedge^{A} b & \text{if } a, b \in A \text{ have a lower bound in } A \\ 0 & \text{if } a, b \in A \text{ have no lower bound in } A \\ a \wedge^{B} b & \text{if } a, b \in B \\ a & \text{if } a \in A, b \in B \text{ with } 1^{B} \leq b \\ b \wedge^{B} 0 & \text{if } a \in A, b \in B \text{ with } 1^{B} \not\leq b. \end{cases}
$$

Example of a 4-element relation algebra

For any monoid $M = (M, \cdot, e)$ the **complex algebra** $P(M)$ is the residuated lattice $(\mathcal{P}(M), \cap, \cup, \cdot, \setminus, \setminus \{e\})$, where for all $X, Y \subseteq M$,

$$
X\cdot Y=\{xy\colon x\in X, y\in Y\},\
$$

 $X\backslash Y = \{z \in M : X \backslash \{z\} \subseteq Y\}$ and $X/Y = \{z \in M : \{z\} \backslash Y \subseteq X\}.$

The previous two-component Płonka sum can be used for the 4-element relation algebra $\mathcal{P}(\mathbb{Z}_2)$ where \mathbb{Z}_2 is the 2-element group.

This relation algebra is **not** locally integral, but it is Plonka decomposable, and the Plonka sum decomposition can be applied to all members of the variety of relation algebras generated by $\mathcal{P}(\mathbb{Z}_2)$.

How good is this structure theory?

The table below shows how many Płonka decomposable residuated posets can be built from indecomposable residuated posets (i.e. ones with a unique positive idempotent).

E.g., for commutative idempotent Płonka decomposable residuated posets, 99 seven-element RPs can be constructed from 13 indecomposable components.

References

- S. S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto: On the structure of balanced residuated partially-ordered monoids, accepted to RAMiCS 2024
- 靠
	- J. Gil-Férez, P. Jipsen, S. Lodhia: The structure of locally integral involutive po-monoids and semirings, proc. of RAMiCS 2023, LNCS 13896, Springer, 69–86, 2023
- F J. Gil-Férez, P. Jipsen, M. Sugimoto: Locally Integral Involutive PO-Semigroups, accepted in Fundamenta Informaticae, 2024 <https://arxiv.org/abs/2310.12926>
- 暈 S. Jenei: Group representation for even and odd involutive commutative residuated chains, 110, 881–922, 2022
- E.
- P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, 82, 57, 2021
- W. McCune: Prover9 and Mace4. <https://www.cs.unm.edu/~mccune/prover9/>, 2005–2010

THANKS!