On the structure of balanced residuated posets

Peter Jipsen

Joint work with Stefano Bonzio, José Gil-Férez, Adam Prenosil and Melissa Sugimoto

Topology, Algebra, Categories in Logic TACL 2024

1 July 2024

University of Barcelona, Spain

S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto On the structu

Residuated posets

A residuated poset is a structure $\mathbf{A} = (A, \leqslant, \cdot, 1, /, \setminus)$ such that

- (A, \leqslant) is a poset,
- $(A, \cdot, 1)$ is a monoid,
- $xy \leqslant z \iff x \leqslant z/y \iff y \leqslant x \backslash z$ (res).

 \implies \cdot is order-preserving in both arguments

/, \ are order-preserving in numerator, order-reversing in denominator Some examples: (\mathbb{R} , ≤, +, 0, -, -^{op}), any ℓ -group, all groups (where ≤ is =, $x \setminus y = x^{-1}y$ and $x/y = xy^{-1}$)

all $\land, \lor\mbox{-free}$ reducts of residuated lattices.

The algebraic semantics of any logic with a fusion, a truth constant and two implications with a deduction theorem (where \leq is \vdash)

Balanced residuated posets

A residuated poset is **balanced** if $x/x = x \setminus x$

idempotent if $x^2 = x$ (where $x^2 = x \cdot x$)

integral if $x \leq 1$ (i.e. 1 is the top element)

Example: every commutative residuated lattice is balanced,

every Boolean algebra is idempotent and integral

A **residuated lattice** is a residuated poset that is a lattice (has \lor, \land).

Decompose (certain) residuated posets into simpler components.

The components are residuated posets with a **unique positive idempotent**.

Reconstruction uses Płonka sums of metamorphisms.

Extends structure theory for **even/odd involutive** FL_e -chains [Jenei 2022],

finite commutative idempotent involutive residuated lattices, the components are Boolean algebras [Jipsen, Tuyt, Valota 2021],

and **locally integral involutive residuated posets**, where the components are **integral** involutive residuated posets [Gil-Férez, Jipsen, Lodhia 2023].

Positive idempotent elements are central

Let $Id^+(\mathbf{A}) = \{p \in A \mid 1 \leq p = p^2\}$ = the set of positive idempotent elements of \mathbf{A} .

The notation 1_x is an abbreviation for x/x.

Lemma

In a residuated poset **A** the following are equivalent:

• A is balanced (i.e.
$$x/x = x \setminus x$$
),

•
$$p \in \mathit{Id}^+(\mathsf{A})$$
 implies p is central (i.e., for every x , $px = xp$),

•
$$1_x$$
 is an identity for x (i.e., $1_x x = x = x 1_x$).

Lemma

If **A** is a balanced residuated poset then $(Id^+(\mathbf{A}), \cdot, 1)$ is a join-semilattice with bottom 1 and the order of **A** agrees with the join-semilattice order on $Id^+(\mathbf{A})$.

Lemma

In a residuated poset \mathbf{A} , $Id^+(\mathbf{A}) = \{x/x \mid x \in A\} = \{x \setminus x \mid x \in A\}$.

Corollary

A residuated poset satisfies $\forall x, x/x = 1 \iff \forall x, x \setminus x = 1$.

Define $x \equiv y \iff 1_x = 1_y$.

Then \equiv is an equivalence relation.

Let
$$A_x = \{y \in A \mid 1_x = 1_y\}$$
 be the equivalence classes.

For a residuated poset **A** the equivalence classes A_x are called the **local components** of **A**.

Decomposable residuated posets

A residuated poset is semilattice decomposable if

$$1_x = 1_y \implies 1_{x \setminus y} = 1_x.$$

Lemma

A semilattice decomposable residuated poset is balanced and

satisfies
$$1_x = 1_y \implies 1_{xy} = 1_x$$
 and $1_x = 1_y \implies 1_{x/y} = 1_x$.

Examples: All commutative idempotent residuated posets.

A RP is **involutive** if $0/(x \setminus 0) = (0/x) \setminus 0$ for some constant 0.

[Gil-Férez, J., Lodhia] all locally integral **involutive** residuated posets are decomposable.

The decomposition theorem

Theorem

Every decomposable residuated poset **A** is a disjoint union of residuated posets $\mathbf{A}_p = (A_p, \leq_p, \cdot_p, 1_p, \setminus_p, /_p)$ where p ranges over the join-semilattice $(Id^+(\mathbf{A}), \leq, \cdot)$, $p = 1_p$ is the unique positive idempotent of \mathbf{A}_p and $\leq_p, \cdot_p, \setminus_p, /_p$ are the restrictions of $\leq, \cdot, \setminus, /$ to A_p .

Proof.

Suppose **A** is decomposable and let $p \in Id^+(\mathbf{A})$, so $p = 1_p$. Then **A** is balanced, so p is a left and right identity on A_p . For $x, y \in A_p$ we have $1_x = p = 1_y$, so the preceding lemma implies $1_{xy} = 1_x$ and $1_{x/y} = 1_x = p$. Therefore $xy, x/y \in A_p$, so the \mathbf{A}_p are residuated posets.

A diagram of the decomposition into local components

Each component A_p intersects $Id^+(\mathbf{A})$ in a **unique** element $\mathbf{1}_x = p$. The \mathbf{A}_p are **integral** \iff \mathbf{A} is square-decreasing $(x \cdot x \leq x)$.

A six-element decomposable example

The left poset (A, \leq) can be equipped with a commutative idempotent multiplication, i.e., the meet operation of the right poset.

This multiplication preserves all joins of (A, \leq) , hence is residuated.

This gives a residuated poset \mathbf{A} , where $Id^+(\mathbf{A}) = \{1, p, q\}$ and $A_1 = \{1, a\}$, $A_p = \{p\}$, and $A_q = \{q, b, \bot\}$.

These sets are closed under residuals, hence **A** is decomposable.

In many cases the original residuated poset can be reconstructed from the local components and two families of maps:

$$\varphi_{pq}, \psi_{pq} : \mathbf{A}_{p} \to \mathbf{A}_{q} \text{ for } p \leqslant q \in Id^{+}(\mathbf{A}).$$

The maps are defined by $\varphi_{pq}(x) = qx$ and $\psi_{pq}(x) = q \setminus x$.

Reconstructing the monoid operation uses a Płonka sum.

Reconstructing the order and residuals requires a generalization.

Let $I = (I, \vee)$ be a join semilattice of **indices**.

A semilattice directed system $\Phi = \{\varphi_{ij} : \mathbf{A}_i \to \mathbf{A}_j : i \leq j \text{ in } \mathbf{I}\}$ is a family of homomorphisms between algebras of the same type if φ_{ii} is the identity on \mathbf{A}_i and $\varphi_{ik} \circ \varphi_{ij} = \varphi_{ik}$, for all $i \leq j \leq k$.

If the algebras contain constants, assume I has a least element \perp .

The **Płonka sum** of a semilattice directed system Φ is an algebra **S** of the same type defined on the disjoint union of the universes $S = \biguplus_{i \in I} A_i$.

For every *n*-ary operation symbol σ and $a_1 \in A_{i_1}, \ldots, a_n \in A_{i_n}$,

$$\sigma^{\mathsf{S}}(a_1,\ldots,a_n)=\sigma^{\mathsf{A}_j}(\varphi_{i_1j}(a_1),\ldots,\varphi_{i_nj}(a_n)),$$

where $j = i_1 \vee \cdots \vee i_n$, and for every constant symbol ω , $\omega^{\mathbf{S}} = \omega^{\mathbf{A}_{\perp}}$.

Metamorphisms between algebras

Let \mathbf{A}, \mathbf{B} be algebras with operation symbols $\sigma \in \mathcal{O}$.

A metamorphism $h : \mathbf{A} \hookrightarrow \mathbf{B}$ is a sequence of functions $h^{\sigma} = (h^{\sigma 0}, \dots, h^{\sigma n})$ for each *n*-ary symbol $\sigma \in \mathcal{O}$ such that

$$h^{\sigma 0}(\sigma^{\mathbf{A}}(a_1,\ldots,a_n)) = \sigma^{\mathbf{B}}(h^{\sigma 1}(a_1),\ldots,h^{\sigma n}(a_n)).$$

In particular, for every constant ω , $f^{\omega} = (f^{\omega 0})$ and $f^{\omega 0}(\omega^{\mathbf{A}}) = \omega^{\mathbf{B}}$.

Every homomorphism $g : \mathbf{A} \to \mathbf{B}$ gives rise to a **metamorphism** $h^{\sigma} = (g, \ldots, g)$, and algebras of the same type form a category with componentwise composition of metamorphisms:

If $h: \mathbf{A} \hookrightarrow \mathbf{B}$ and $k: \mathbf{B} \hookrightarrow \mathbf{C}$ then $k \circ h: \mathbf{A} \hookrightarrow \mathbf{C}$ is defined by $(k \circ h)^{\sigma} = (k^{\sigma 0} \circ h^{\sigma 0}, \dots, k^{\sigma n} \circ h^{\sigma n}).$

The **identity** metamorphism is $id : \mathbf{A} \hookrightarrow \mathbf{A}$, $id^{\sigma} = (id^{A}, \dots, id^{A})$.

Płonka sum of metamorphisms

A semilattice directed system of metamorphisms is a family $\mathcal{H} = \{h_{pq} : \mathbf{A}_p \hookrightarrow \mathbf{A}_q : p \leq q \text{ in } \mathbf{I}\}$ such that $h_{pp} = id^{\mathbf{A}_p}$ and $h_{qr} \circ h_{pq} = h_{pr}$.

The **Płonka sum of a directed system of metamorphisms** \mathcal{H} is the algebra **A** whose universe is $A = \biguplus A_p$, and such that for every *n*-ary operation σ and all $a_1 \in A_{p_1}, \ldots, a_n \in A_{p_n}$,

$$\sigma^{\mathbf{A}}(a_1,\ldots,a_n)=\sigma^{\mathbf{A}_q}(h_{p_1q}^{\sigma 1}(a_1),\ldots,h_{p_nq}^{\sigma n}(a_n)),$$

where $q = p_1 \vee \cdots \vee p_n$.

If the type τ contains a constant symbol ω , then we assume that **I** has a least element \perp and $\omega^{\mathbf{A}} = \omega^{\mathbf{A}_{\perp}}$.

Reconstructing Płonka decomposable residuated posets

A residuated poset is Płonka decomposable if it satisfies

$$\begin{split} \mathbf{1}_{xy} &= \mathbf{1}_{x\setminus y} = \mathbf{1}_{x/y} = \mathbf{1}_{x} \cdot \mathbf{1}_{y}.\\ \text{For } p \leqslant q \in \textit{Id}^{+}(\mathbf{A}) \text{ define } \varphi_{pq}, \psi_{pq} : \mathbf{A}_{p} \to \mathbf{A}_{q} \text{ by}\\ \varphi_{pq}(x) &= qx \quad \text{and} \quad \psi_{pq}(x) = q \backslash x. \end{split}$$

Theorem

The algebraic reduct of a Płonka decomposable residuated poset **A** is the Płonka sum of the directed system of metamorphisms $\mathcal{H} = \{h_{pq} : \mathbf{A}_p \hookrightarrow \mathbf{A}_q : p \leq q \text{ in } \mathbf{I}\}$ given by

$$\begin{aligned} h^{1}_{pq} &= (\varphi_{pq}), & h^{\cdot}_{pq} &= (\varphi_{pq}, \varphi_{pq}, \varphi_{pq}), \\ h^{\setminus}_{pq} &= (\psi_{pq}, \varphi_{pq}, \psi_{pq}), & h^{/}_{pq} &= (\psi_{pq}, \psi_{pq}, \varphi_{pq}). \end{aligned}$$

Moreover, for all $p,q \in I$, $a \in A_p$, and $b \in A_q$,

$$\mathsf{a} \leqslant \mathsf{b} \quad \Longleftrightarrow \quad arphi_{\mathsf{ps}}(\mathsf{a}) \leqslant_s \psi_{\mathsf{qs}}(\mathsf{b}), \quad \textit{where } \mathsf{s} = \mathsf{pq}.$$

Sums of posets

Let $\mathbf{I} = (I, \vee)$ be a join-semilattice and (Φ, Ψ) a pair of directed systems of monotone maps $\Phi = \{\varphi_{pq} : \mathbf{A}_p \to \mathbf{A}_q : p \leq q \text{ in } \mathbf{I}\}$ and $\Psi = \{\psi_{pq} : \mathbf{A}_p \to \mathbf{A}_q : p \leq q \text{ in } \mathbf{I}\}.$

Define the relation \leq on $A = \biguplus A_p$ as follows: for all $p, q \in I$, $a \in A_p$, and $b \in A_q$,

$$a \leqslant b \quad \Longleftrightarrow \quad \varphi_{ps}(a) \leqslant_s \psi_{qs}(b), \quad \text{where } s = p \lor q.$$

In general, this relation is not a partial order, but it will be if the following three conditions are satisfied. In that case, we call (A, \leq) the **sum** of the family of posets $\{\mathbf{A}_p : p \in I\}$ **over** (Φ, Ψ) . (O1) if p < q then $\psi_{pq} <_{q} \varphi_{pq}$ pointwise,

(O2) if
$$p \leqslant q, r$$
 and $t = q \lor r$, then $\varphi_{qt}\psi_{pq} \leqslant_t \psi_{rt}\varphi_{pr}$ pointwise,

(O3) for all $a, b \in A_p$ and $p \leq q$, if $\varphi_{pq}(a) \leq_q \psi_{pq}(b)$, then $a \leq_p b$.

Construction of posets from components

Theorem

Given a pair (Φ,Ψ) of directed systems of monotone maps, the relation \leqslant defined by

$$a \leqslant b \quad \Longleftrightarrow \quad \varphi_{ps}(a) \leqslant_s \psi_{qs}(b), \quad where \ s = p \lor q.$$

is a partial order extending the order of each poset if and only if (Φ, Ψ) satisfies (O1)–(O3).

Construction Theorem

Let $\{\mathbf{A}_p : p \in I\}$ be a family of residuated posets indexed on a join semilattice $\mathbf{I} = (I, \vee)$ with least element \bot and Φ, Ψ a pair of semilattice directed systems of monotone maps such that $\mathcal{H} = \{h_{pq} : \mathbf{A}_p \hookrightarrow \mathbf{A}_q : p \leq q \text{ in } \mathbf{I}\}$ is a directed system of metamorphisms defined by

$$\begin{aligned} h^{1}_{pq} &= (\varphi_{pq}), & h^{\cdot}_{pq} &= (\varphi_{pq}, \varphi_{pq}, \varphi_{pq}), \\ h^{\setminus}_{pq} &= (\psi_{pq}, \varphi_{pq}, \psi_{pq}), & h^{/}_{pq} &= (\psi_{pq}, \psi_{pq}, \varphi_{pq}). \end{aligned}$$

and (Φ, Ψ) satisfies (O1)–(O3). Then the Płonka sum of \mathcal{H} together with the sum of the poset reducts over (Φ, Ψ) is a residuated poset.

An **involutive residuated poset**, or InRP, is a structure of the form $\mathbf{A} = (A, \leq, \cdot, 1, \sim, -)$ such that (A, \leq) is a poset and $(A, \cdot, 1)$ is a monoid satisfying

$$x \leqslant y \iff x \cdot \sim y \leqslant -1 \iff -y \cdot x \leqslant -1.$$
 (ineg)

The monoid operation is residuated with residuals defined by $x \setminus y = \sim (-y \cdot x)$ and $x/y = -(y \cdot \sim x)$.

An ipo-monoid **A** is **locally integral** if it is balanced, and it satisfies $x \leq 1_x$ and $x \setminus 1_x = 1_x$, where $1_x = x/x = -(x \cdot \neg x)$.

S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto On the structure of balanced residuated posets

Płonka sums of InRP

The metamorphisms are determined by the two families of maps

$$arphi_{pq}(x) = 1_q \cdot x = q \cdot x$$
 and

$$\psi_{pq}(x) = \sim (-x \cdot 1_q) = q \setminus x = \sim \varphi_{pq}(-x).$$

Hence every locally integral InRP is a Płonka sum, and its order can be recovered by

$$a \leqslant b \quad \Longleftrightarrow \quad \varphi_{ps}(a) \leqslant_s \psi_{qs}(b), \quad \text{where } s = p \lor q.$$

This is the structure theory originally obtained in an ad hoc manner in [Gil-Férez, J., Lodhia 2023].

$$a \leqslant b \quad \Longleftrightarrow \quad \varphi_{ps}(a) \cdot_s \varphi_{ps}(\sim b) = 0_s, \quad \text{where } s = p \lor q.$$

Example: Płonka sum of two residuated posets

Let \mathbf{A}_1 and \mathbf{A}_2 be two residuated posets, with two directed systems $\Phi = \{\varphi_{pq} : p \leq q\}$ and $\Psi = \{\psi_{pq} : p \leq q\}$, indexed over the 2-element chain 1 < 2, such that the nonidentity maps $\varphi_{12}, \psi_{12} : A_1 \to A_2$ are defined by

$$a\mapsto \varphi_{12}(a)=1^{\mathbf{A}_2}$$
 and $a\mapsto \psi_{12}(a)=0,$

with 0 a fixed element in A_2 such that $0 < 1^{\mathbf{A}_2}$.

Then (Φ, Ψ) satisfies the conditions of the **Construction Theorem**, hence we obtain a residuated poset $\mathbf{S} = \mathbf{A}_1 \uplus \mathbf{A}_2$.

S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto

On the structure of balanced residuated posets

When will the construction produce a residuated lattice?

In general this is an open problem, but for the two-component Płonka sum it suffices if A_1 is a (chopped) lattice and A_2 is a lattice. Join and meet are defined as follows:

$$a \vee^{\mathbf{S}} b = \begin{cases} a \vee^{\mathbf{A}} b & \text{if } a, b \in A \text{ have an upper bound in } A \\ 1^{\mathbf{B}} & \text{if } a, b \in A \text{ have no upper bound in } A \\ a \vee^{\mathbf{B}} b & \text{if } a, b \in B \\ a & \text{if } a \in A, \ b \in B \text{ with } b \leqslant 0 \\ b \vee^{\mathbf{B}} 1^{\mathbf{B}} & \text{if } a \in A, \ b \in B \text{ with } b \leqslant 0, \end{cases}$$
$$a \wedge^{\mathbf{S}} b = \begin{cases} a \wedge^{\mathbf{A}} b & \text{if } a, b \in A \text{ have a lower bound in } A \\ 0 & \text{if } a, b \in A \text{ have no lower bound in } A \\ 0 & \text{if } a, b \in B \text{ with } b \leqslant 0, \end{cases}$$
$$a \wedge^{\mathbf{S}} b = \begin{cases} a \wedge^{\mathbf{A}} b & \text{if } a, b \in A \text{ have no lower bound in } A \\ 0 & \text{if } a, b \in B \text{ have no lower bound in } A \\ a \wedge^{\mathbf{B}} b & \text{if } a, b \in B \\ a & \text{if } a \in A, \ b \in B \text{ with } 1^{\mathbf{B}} \leqslant b \\ b \wedge^{\mathbf{B}} 0 & \text{if } a \in A, \ b \in B \text{ with } 1^{\mathbf{B}} \notin b. \end{cases}$$

Example of a 4-element relation algebra

For any monoid $\mathbf{M} = (M, \cdot, e)$ the **complex algebra** $\mathcal{P}(\mathbf{M})$ is the residuated lattice $(\mathcal{P}(M), \cap, \cup, \cdot, \setminus, /, \{e\})$, where for all $X, Y \subseteq M$,

$$X \cdot Y = \{xy \colon x \in X, y \in Y\},\$$

 $X \setminus Y = \{z \in M \colon X \cdot \{z\} \subseteq Y\} \text{ and } X/Y = \{z \in M \colon \{z\} \cdot Y \subseteq X\}.$

The previous two-component Płonka sum can be used for the 4-element relation algebra $\mathcal{P}(\mathbb{Z}_2)$ where \mathbb{Z}_2 is the 2-element group.

This relation algebra is **not** locally integral, but it is Płonka decomposable, and the Płonka sum decomposition can be applied to all members of the variety of relation algebras generated by $\mathcal{P}(\mathbb{Z}_2)$.

How good is this structure theory?

The table below shows how many Płonka decomposable residuated posets can be built from indecomposable residuated posets (i.e. ones with a unique positive idempotent).

Cardinality $n =$	1	2	3	4	5	6	7	8
Residuated posets (RP)	1	2	5	28	186	1795		
Residuated lattices	1	1	3	20	149	1488	18554	295292
Slat. decomposable RP	1	2	5	24	134	1029		
Płonka decomposable RP	1	2	5	23	121	889		
Unique pos. idem. RP	1	2	4	16	72	516		
Com. idem. Pł. decomp. RP	1	1	2	5	13	36	107	
Idempotent integral RP	1	1	1	2	3	5	8	15

E.g., for commutative idempotent Płonka decomposable residuated posets, **99** seven-element RPs can be constructed from **13** indecomposable components.

References

- S. Bonzio, J. Gil-Férez, P. Jipsen, A. Prenosil, M. Sugimoto: On the structure of balanced residuated partially-ordered monoids, accepted to RAMiCS 2024
- J. Gil-Férez, P. Jipsen, S. Lodhia: The structure of locally integral involutive po-monoids and semirings, proc. of RAMiCS 2023, LNCS 13896, Springer, 69–86, 2023
- J. Gil-Férez, P. Jipsen, M. Sugimoto: Locally Integral Involutive PO-Semigroups, accepted in Fundamenta Informaticae, 2024 https://arxiv.org/abs/2310.12926
- S. Jenei: Group representation for even and odd involutive commutative residuated chains, **110**, 881–922, 2022
- P. Jipsen, O. Tuyt, D. Valota: Structural characterization of commutative idempotent involutive residuated lattices, Algebra Universalis, 82, 57, 2021
- W. McCune: Prover9 and Mace4. https://www.cs.unm.edu/~mccune/prover9/, 2005-2010

THANKS!