Table of Contents

Complemented modular lattices

Abbreviation: CdMLat

Definition

A \emph{complemented modular lattice} is a complemented lattices $\mathbf{L}=\langle L,\vee ,0,\wedge ,1\rangle $ that is

modular lattices: $(( x\wedge z) \vee y) \wedge z=( x\wedge z) \vee ( y\wedge z) $

Morphisms

Let $\mathbf{L}$ and $\mathbf{M}$ be complemented modular lattices. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $h:L\to M$ that is a bounded lattice homomorphism:

$h(x\vee y)=h(x)\vee h(y)$, $h(x\wedge y)=h(x)\wedge h(y)$, $h(0)=0 $, $h(1)=1$

Examples

Example 1:

Basic results

This class generates the same variety as the class of its finite members plus the non-desargean planes.

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &1
f(3)= &0
f(4)= &1
f(5)= &1
f(6)= &
f(7)= &
f(8)= &
\end{array}$

Subclasses

Boolean lattices

Superclasses

Bounded lattices

Modular lattices

References