Abbreviation: ImpLat
An \emph{implicative lattice} is a structure A=⟨A,∨,∧,→⟩ such that
⟨A,∨,∧⟩ is a distributive lattices → is an implication:
x→(y∨z)=(x→y)∨(x→z)
x→(y∧z)=(x→y)∧(x→z)
(x∨y)→z=(x→z)∧(y→z)
(x∧y)→z=(x→z)∨(y→z)
Let A and B be involutive lattices. A morphism from A to B is a function h:A→B that is a homomorphism:
h(x∨y)=h(x)∨h(y), h(x∨y)=h(x)∧h(y), h(x→y)=h(x)→h(y)
Nestor G. Martinez,H. A. Priestley,\emph{On Priestley spaces of lattice-ordered algebraic structures}, Order, \textbf{15}1998,297–323MRreview
Nestor G. Martinez,\emph{A simplified duality for implicative lattices and l-groups}, Studia Logica, \textbf{56}1996,185–204MRreview
Example 1:
f(1)=1f(2)=1f(3)=1f(4)=f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=