Processing math: 100%

Table of Contents

Implicative lattices

Abbreviation: ImpLat

Definition

An \emph{implicative lattice} is a structure A=A,,, such that

A,, is a distributive lattices is an implication:

x(yz)=(xy)(xz)

x(yz)=(xy)(xz)

(xy)z=(xz)(yz)

(xy)z=(xz)(yz)

Morphisms

Let A and B be involutive lattices. A morphism from A to B is a function h:AB that is a homomorphism:

h(xy)=h(x)h(y), h(xy)=h(x)h(y), h(xy)=h(x)h(y)

Nestor G. Martinez,H. A. Priestley,\emph{On Priestley spaces of lattice-ordered algebraic structures}, Order, \textbf{15}1998,297–323MRreview

Nestor G. Martinez,\emph{A simplified duality for implicative lattices and l-groups}, Studia Logica, \textbf{56}1996,185–204MRreview

Examples

Example 1:

Basic results

Properties

Finite members

f(1)=1f(2)=1f(3)=1f(4)=f(5)=f(6)=f(7)=f(8)=f(9)=f(10)=

Subclasses

Goedel algebras

MV-algebras

Lattice-ordered groups

Superclasses

Distributive lattices

References