Table of Contents
Lattice-ordered groups
Abbreviation: LGrp
Definition
A \emph{lattice-ordered group} (or $\ell $\emph{-group}) is a structure $\mathbf{L}=\langle L, \vee, \wedge, \cdot, ^{-1}, e\rangle$ such that
$\langle L, \vee, \wedge\rangle$ is a lattice
$\langle L, \cdot, ^{-1}, e\rangle$ is a group
$\cdot$ is order-preserving: $x\leq y\Longrightarrow uxv\leq uyv$
Remark: $xy=x\cdot y$, $x\leq y\Longleftrightarrow x\wedge y=x$ and $x\leq y\Longleftrightarrow x\vee y=y$
Definition
A \emph{lattice-ordered group} (or $\ell $\emph{-group}) is a structure $\mathbf{L}=\langle L,\vee ,\cdot ,^{-1},e\rangle $ such that
$\langle L,\vee\rangle $ is a semilattice
$\langle L,\cdot,^{-1},e\rangle $ is a group
$\cdot$ is join-preserving: $u(x\vee y)v=uxv\vee uyv$
Remark: $x\wedge y=( x^{-1}\vee y^{-1}) ^{-1}$
Definition
A \emph{lattice-ordered group} (or $\ell $\emph{-group}) is a residuated lattice $\mathbf{L}=\langle L,\vee ,\wedge ,\cdot ,\backslash ,/,e\rangle $ that satisfies the identity $x(e/x)=e$.
Remark: $x^{-1}=e/x=x\backslash e$, $x/y=xy^{-1}$ and $x\backslash y=x^{-1}y$
Morphisms
Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell $-groups. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\to M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$, $f(x\wedge y)=f(x)\wedge f(y)$, $f(x\cdot y)=f(x)\cdot f(y)$, $f(x^{-1})=f(x)^{-1}$, and $f(e)=e$.
Examples
$\langle Aut(\mathbf{C}),\mbox{max},\mbox{min},\circ,^{-1},id_{\mathbf{C}}\rangle$, the group of order-automorphisms of a Chains $\mathbf{C}$, with $\mbox{max}$ and $\mbox{min}$ (applied pointwise), composition, inverse, and identity automorphism.
Basic results
The lattice reducts of lattice-ordered groups are distributive lattices.
Properties
Classtype | variety |
---|---|
Equational theory | decidable1) |
Quasiequational theory | undecidable2) |
First-order theory | hereditarily undecidable3) 4) |
Congruence distributive | yes, see lattices |
Congruence extension property | |
Congruence n-permutable | yes, $n=2$, see groups |
Congruence regular | yes, see groups |
Congruence uniform | yes, see groups |
Definable principal congruences | |
Equationally def. pr. cong. | |
Amalgamation property | no |
Strong amalgamation property | no |
Epimorphisms are surjective |
Finite nontrivial members
None