Table of Contents

Kleene algebras

Abbreviation: KA

Definition

A \emph{Kleene algebra} is a structure $\mathbf{A}=\langle A,\vee ,0,\cdot ,1,^{\ast }\rangle $ of type $\langle 2,0,2,0,1\rangle $ such that $\langle A,\vee ,0,\cdot ,1\rangle $ is an idempotent semiring with identity and zero

$e\vee x\vee x^{\ast }x^{\ast }=x^{\ast }$

$xy\leq y\Longrightarrow x^{\ast }y=y$

$yx\leq y\Longrightarrow yx^{\ast }=y$

Morphisms

Let $\mathbf{A}$ and $\mathbf{B}$ be Kleene algebras. A morphism from $\mathbf{A}$ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism: $h(x\vee y)=h(x)\vee h(y)$, $h(x\cdot y)=h(x)\cdot h(y)$, $h(x^{\ast })=h(x)^{\ast }$, $h(0)=0$, and $h(1)=1$.

Examples

Example 1:

Basic results

Properties

Finite members

$\begin{array}{lr} f(1)= &1
f(2)= &1
f(3)= &3
f(4)= &20
f(5)= &149
f(6)= &1488
\end{array}$

Subclasses

Action algebras

Kleene lattices

Superclasses

Idempotent semirings with identity and zero

References


1) L. J. Stockmeyer, A. R. Meyer, \emph{Word problems requiring exponential time: preliminary report}, Fifth Annual ACM Symposium on Theory of Computing (Austin, Tex., 1973), Assoc. Comput. Mach., New York, 1973, 1–9 MRreviewZMATH