Abbreviation: NVLGrp
A \emph{normal valued lattice-ordered group} (or \emph{normal valued} $\ell$\emph{-group}) is a lattice-ordered group $\mathbf{L}=\langle L, \vee, \wedge, \cdot, ^{-1}, e\rangle$ that satisfies
$(x\vee x^{-1})(y\vee y^{-1}) \le (y\vee y^{-1})^2(x\vee x^{-1})^2$
Let $\mathbf{L}$ and $\mathbf{M}$ be $\ell$-groups. A morphism from $\mathbf{L}$ to $\mathbf{M}$ is a function $f:L\rightarrow M$ that is a homomorphism: $f(x\vee y)=f(x)\vee f(y)$ and $f(x\cdot y)=f(x)\cdot f(y)$.
Remark: It follows that $f(x\wedge y)=f(x)\wedge f(y)$, $f(x^{-1})=f(x)^{-1}$, and $f(e)=e$
The variety of normal valued $\ell$-groups is the largest proper subvariety of lattice-ordered groups 1).
Classtype | variety |
---|---|
Equational theory | |
Quasiequational theory | |
First-order theory | hereditarily undecidable 2) 3) |
Locally finite | no |
Residual size | |
Congruence distributive | yes (see lattices) |
Congruence modular | yes |
Congruence n-permutable | yes, $n=2$ (see groups) |
Congruence regular | yes, (see groups) |
Congruence uniform | yes, (see groups) |
Congruence extension property | |
Definable principal congruences | |
Equationally def. pr. cong. | |
Amalgamation property | |
Strong amalgamation property | |
Epimorphisms are surjective |
None