Abbreviation: qMV
A \emph{quasi-MV-algebra}1) is a structure $\mathbf{A}=\langle A, \oplus, ', 0, 1\rangle$ such that
$(x\oplus y)\oplus z = x\oplus(y\oplus z)$
$x''=x$
$x \oplus 1 = 1$
$(x'\oplus y)'\oplus y = (y'\oplus x)'\oplus x$
$(x\oplus 0)' = x'\oplus 0$
$(x\oplus 0)\oplus 0 = x\oplus 0$
$0' = 1$
Let $\mathbf{A}$ and $\mathbf{B}$ be MV-algebras. A morphism from $\mathbf{A} $ to $\mathbf{B}$ is a function $h:A\to B$ that is a homomorphism:
$h(x\oplus y)=h(x)\oplus h(y)$, $h(x')=h(x)'$, $h(0)=0$
The standard qMV-algebra is $\mathbf S=\langle [0,1]^2,\oplus, ', \mathbf 0, \mathbf 1\rangle$ where $\langle a,b\rangle\oplus \langle c,d\rangle=\langle \min(1,a+c), \frac12\rangle$, $\langle a,b\rangle'=\langle 1-a,1-b\rangle$, $\mathbf 0=\langle 0,\frac12\rangle$ and $\mathbf 1=\langle 1,\frac12\rangle$.
The variety of qMV-algebras is generated by the standard qMV-algebra.
The operation $\oplus$ is commutative: $x\oplus y = y\oplus x$.
Every qMV-algebra that satisfies $x\oplus 0 = x$ is an MV-algebra.
$n$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# of algs | 1 | 2 | 3 | 6 | 7 | 14 | 15 | 31 | 32 | 65 | 68 | ||||||||||||||
# of si's | 0 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |